Answer:
5.0 × 10²⁴ molecules
Explanation:
Step 1: Write the balanced double displacement reaction
2 NaOH + CuSO₄ ⇒ Na₂SO₄ + Cu(OH)₂
Step 2: Calculate the moles corresponding to 5.0 × 10²⁴ molecules of Na₂SO₄
We will use Avogadro's number: there are 6.02 × 10²³ molecules in 1 mole of molecules.
5.0 × 10²⁴ molecule × 1 mol/6.02 × 10²³ molecule = 8.3 mol
Step 3: Calculate the moles of CuSO₄ required to produce 8.3 moles of Na₂SO₄
The molar ratio of CuSO₄ to Na₂SO₄ is 1:1. The moles of CuSO₄ required are 1/1 × 8.3 mol = 8.3 mol.
Step 4: Calculate the molecules corresponding to 8.3 moles of CuSO₄
We will use Avogadro's number.
8.3 mol × 6.02 × 10²³ molecule/1 mol = 5.0 × 10²⁴ molecule
initial volume of the argon sample = 5.93L according to Boyle's law
What is Boyle's law ?
Boyle's law, also known as Mariotte's law, is a relationship describing how a gas will compress and expand at a constant temperature. The pressure (p) of a given quantity of gas changes inversely with its volume (v) at constant temperature, according to this empirical connection, which was established by the physicist Robert Boyle in 1662. In equation form, this means that pv = k, a constant.
According to Boyle's law
P1/V1 = P2/V2
P1 = initial pressure
P2 = final pressure
V1 =initial volume
V2= final volume
V1 = P1*V2/P2
V1 = 2.32*18.3/7.16 = 5.93L
initial volume of the argon sample = 5.93L according to Boyle's law
To know about Boyle's law from the link
brainly.com/question/26040104
#SPJ4
The freezing point depression is a colligative property which means that it is proportional to the number of particles dissolved.
The number of particles dissolved depends on the dissociation constant of the solutes, when theyt are ionic substances.
If you have equal concentrations of two solutions on of which is of a ionic compound and the other not, then the ionic soluton will contain more particles (ions) and so its freezing point will decrease more (will be lower at end).
In this way you can compare the freezing points of solutions of KCl, Ch3OH, Ba(OH)2, and CH3COOH, which have the same concentration.
As I explained the solution that produces more ions will exhibit the greates depression of the freezing point, leading to the lowest freezing point.
In this case, Ba(OH)2 will produce 3 iones, while KCl will produce 2, CH3OH will not dissociate into ions, and CH3COOH will have a low dissociation constant.
Answer: Then, you can predict that Ba(OH)2 solution has the lowest freezing point.
B. The area of the island is your answer :)
I think it’s d
If it’s wrong then I’m sorry