The composite function combines the palm tree and the seed functions
The composite function is t(d) = 60d + 20
<h3>How to determine the composite functions</h3>
The functions are given as:
Number of palm trees: t(s) = 3s + 20
Number of seeds: s(d) = 20d
The composite function that represents the number of palm trees Carlos can expect to grow over a certain number of days is represented as:
t(s(d))
This is calculated as:
t(s(d)) = 3s(d) + 20
Substitute s(d) = 20d
t(s(d)) = 3 * 20d + 20
Evaluate the product
t(s(d)) = 60d + 20
Rewrite as:
t(d) = 60d + 20
Hence, the composite function is t(d) = 60d + 20
Read more about composite functions at:
brainly.com/question/10687170
Answer:

![\sqrt[3]{0.95} \approx 0.9833](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B0.95%7D%20%5Capprox%200.9833)
![\sqrt[3]{1.1} \approx 1.0333](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B1.1%7D%20%5Capprox%201.0333)
Step-by-step explanation:
Given the function: ![g(x)=\sqrt[3]{1+x}](https://tex.z-dn.net/?f=g%28x%29%3D%5Csqrt%5B3%5D%7B1%2Bx%7D)
We are to determine the linear approximation of the function g(x) at a = 0.
Linear Approximating Polynomial,
a=0
![g(0)=\sqrt[3]{1+0}=1](https://tex.z-dn.net/?f=g%280%29%3D%5Csqrt%5B3%5D%7B1%2B0%7D%3D1)

Therefore:

(b)![\sqrt[3]{0.95}= \sqrt[3]{1-0.05}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B0.95%7D%3D%20%5Csqrt%5B3%5D%7B1-0.05%7D)
When x = - 0.05

![\sqrt[3]{0.95} \approx 0.9833](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B0.95%7D%20%5Capprox%200.9833)
(c)
(b)![\sqrt[3]{1.1}= \sqrt[3]{1+0.1}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B1.1%7D%3D%20%5Csqrt%5B3%5D%7B1%2B0.1%7D)
When x = 0.1

![\sqrt[3]{1.1} \approx 1.0333](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B1.1%7D%20%5Capprox%201.0333)
Answer:
Step-by-step explanation:
Given that:
Population Mean = 7.1
sample size = 24
Sample mean = 7.3
Standard deviation = 1.0
Level of significance = 0.025
The null hypothesis:

The alternative hypothesis:

This test is right-tailed.

Rejection region: at ∝ = 0.025 and df of 23, the critical value of the right-tailed test 
The test statistics can be computed as:



t = 0.980
Decision rule:
Since the calculated value of t is lesser than, i.e t = 0.980 <
, then we do not reject the null hypothesis.
Conclusion:
We conclude that there is insufficient evidence to claim that the population mean is greater than 7.1 at 0.025 level of significance.
Answer:
All of them
Step-by-step explanation:
ツ
<ABC + <ABC = 180
3x- 9 + 7x - 1 = 180
10x - 10 = 180
10x = 190
x = 19
<ABC = 3x- 9 = 3(19) - 9 = 48