Answer:
- The function f(x) = 9,000(0.95)^x represents the situation.
- After 2 years, the farmer can estimate that there will be about 8,120 bees remaining.
- The range values, in the context of the situation, are limited to whole number
Step-by-step explanation:
The "growth" rate is -5%, so the growth factor, the base in the exponential equation, is 1.00-5% =0.95.
Using x=2, we find the population in 2 years is expected to be about ...
f(2) = 9000·0.95^2 ≈ 8123 . . . . about 8120
Using x=4, we find the population in 4 years is expected to be about ...
f(4) = 9000·0.95^4 ≈ 7331 . . . . about 7330
Since population is whole numbers of bees, the range of the function is limited to whole numbers.
The domain of the function is numbers of years. Years can be divided into fractions as small as you want, so the domain is not limited to whole numbers.
The choices listed above are applicable to the situation described.
This is Very good correct
Answer:
<h3><em>
D. 880 = 45d + 70; 18 days.</em></h3>
Step-by-step explanation:
We are given fixed monthly charge = $70.
The cost of preschool per day = $45.
Number of days = d.
Total cost of d days = cost per day × number of days + fixed monthly charge.
Therefore, we get equation
880 = 45×d+70
<h3>880 = 45d +70.</h3>
Now, we need to solve the equation for d.
Subtracting 70 from both sides, we get
880-70 = 45d +70-70
810=45d
Dividing both sides by 45, we get

18=d.
Therefore,<em> 18 days Barry attended preschool last month.</em>
<em>Therefore, correct option is D option.</em>
<h3><em>
D. 880 = 45d + 70; 18 days.</em></h3>
Answer:
The answer would be 155 tickets
Answer:
0
Step-by-step explanation:
Anything times 0 is 0.