Answer:
(a) 1462.38 m/s
(b) 2068.13 m/s
Explanation:
(a)
The Kinetic energy of the atom can be given as:
K.E = (3/2)KT
where,
K = Boltzman's Constant = 1.38 x 10⁻²³ J/k
K.E = Kinetic Energy of atoms = 343 K
T = absolute temperature of atoms
The K.E is also given as:
K.E = (1/2)mv²
Comparing both equations:
(1/2)mv² = (3/2)KT
v² = 3KT/m
v = √[3KT/m]
where,
m = mass of Helium = (4 A.M.U)(1.66 X 10⁻²⁷ kg/ A.M.U) = 6.64 x 10⁻²⁷ kg
v = RMS Speed of Helium Atoms = ?
Therefore,
v = √[(3)(1.38 x 10⁻²³ J/K)(343 K)/(6.64 x 10⁻²⁷ kg)]
<u>v = 1462.38 m/s</u>
(b)
For double temperature:
T = 2 x 343 K = 686 K
all other data remains same:
v = √[(3)(1.38 x 10⁻²³ J/K)(686 K)/(6.64 x 10⁻²⁷ kg)]
<u>v = 2068.13 m/s</u>
Urban sprawl occurs when housing is filled in one location and car dependent communities are forced to moved away from the central urban areas where the population is too vast, even though this impacts the environment by increasing pollution and causing environmental degradation.
Answer:
mass =25 kg
using clockwise moment = anticlockwise moment
Answer:
e)
Explanation:
In an RC series circuit, at any time, the sum of the voltages through the resistor and the capacitor must be constant and equal to the voltage of the DC voltage source, in order to be compliant with KVL.
At= 0, as the voltage through the capacitor can't change instantaneously, all the voltage appears through the resistor, which means that a current flows, that begins to charge the capacitor, up to a point that the voltage through the capacitor is exactly equal to the DC voltage, so no current flows in the circuit anymore, and the charge in the capacitor reaches to its maximum value.
It is determined by the nature of the green light. Because lasers create light at almost a single frequency, green laser light would appear as a thin line of pure green. Other sources of "green" light emit light at a variety of frequencies, including yellow and blue, resulting in a strong green band in the center that fades into blue-green and yellow-green at the borders.
For example, here’s a graph of the spectrum of a green LED, showing the color range: Attachment #1
and here’s a graph of the transmission spectra of several standard photographic filters, including green: Attachment #2
Learn more about the color spectrum:
#SPJ2