Answer:
Explanation:
gravitational acceleration of meteoroid
= GM / R²
M is mass of planet , R is radius of orbit of meteoroid from the Centre of the planet .
R = (.9 x 6370 + 600 )x 10³ m
= 6333 x 10³ m
M , mass of the planet = 5.97 x 10²⁴ kg .
gravitational acceleration of meteoroid
= GM / R²
= (6.67 x 10⁻¹¹ x 5.97 x 10²⁴ kg / (6333 x 10³ m)²
9.92m/s²
C.<span>Molecules can move more rapidly and freely and change states.
</span>
Answer:
The electric field at origin is 3600 N/C
Solution:
As per the question:
Charge density of rod 1, 
Charge density of rod 2, 
Now,
To calculate the electric field at origin:
We know that the electric field due to a long rod is given by:

Also,
(1)
where
K = electrostatic constant = 
R = Distance
= linear charge density
Now,
In case, the charge is positive, the electric field is away from the rod and towards it if the charge is negative.
At x = - 1 cm = - 0.01 m:
Using eqn (1):

(towards)
Now, at x = 1 cm = 0.01 m :
Using eqn (1):

(towards)
Now, the total field at the origin is the sum of both the fields:

Given:
Work done, W = 5 J
Initial energy = 8J
Final energy = 30J
Let's determine if the work done have a positive or nrgative value.
Appy the equation for the first lae of thermodynamics:

Where:
U is the change in internal energy
Q is the added heat
W is the work done
To find the work done here, we have:
Rewrite the formula for W

Where:
ΔU = 30J - 8J = 22J
Q = 5J
Thus, we have:

Therefore, the work done here is -17J.
This means the work done in this scenario has a negative value.
ANSWER:
The work done in this scenario has a negative value