Answer:
a) 0.568 kg
b) 474 kg/m³
Explanation:
Given:
Inner radius = 8.82 cm = 0.0882 m
Outer radius = 9.91 cm = 0.0991 m
Density of the liquid = 948.00 Kg/m³
a) The volume of the sphere =
or
volume of sphere = 0.0012 m³
also, volume of half sphere =
or
volume of half sphere =
or
Volume of half sphere =0.0006 m³
Now, from the Archimedes principle
Mass of the sphere = Weight of the volume of object submerged
or
Mass of the sphere = 0.0006× 948.00 = 0.568 kg
b) Now, density =
or
Density =
or
Density = 474 kg/m³
The particles of the medium (slinky in this case) move up and down (choice #2) in a transverse wave scenario.
This is the defining characteristic of transverse waves, like particles on the surface of water while a wave travels on it, or like particles in a slack rope when someone sends a wave through by giving it a jolt.
The other kind of waves is longitudinal, where the particles of the medium move "left-and-right" along the direction of the wave propagation. In the case of the slinky, this would be achieved by giving a tensioned slinky an "inward" jolt. You would see that such a jolt would give rise to a longitudinal wave traveling along the length of the tensioned slinky. Another example of longitudinal waves are sound waves.
The interaction of electric currents or fields and magnetic fields.
Answer:
Approximately
.
Explanation:
Since the result needs to be accurate to three significant figures, keep at least four significant figures in the calculations.
Look up the Rydberg constant for hydrogen:
.
Look up the speed of light in vacuum:
.
Look up Planck's constant:
.
Apply the Rydberg formula to find the wavelength
(in vacuum) of the photon in question:
.
The frequency of that photon would be:
.
Combine this expression with the Rydberg formula to find the frequency of this photon:
.
Apply the Einstein-Planck equation to find the energy of this photon:
.
(Rounded to three significant figures.)
<span>Surface ocean currents are generally wind-driven. However, the rotation of the Earth affects the way the waters move through currents. Without rotation, currents may not exist.</span>