Answer:
The correct option is;
The atoms and molecules of the liquid water are moving, while the atoms and molecules of the glass are not moving
Explanation:
Matter that exist in the liquid or gaseous state consist of molecules that move freely about in the entire containing medium for gas, while the molecules move freely in the portion of the container occupied by the fluid in the case of liquid fluids
However, the molecules of a solid are fixed within the current shape of the solid and are only free to vibrate within a fixed location and the allow the passage of subatomic particles such as electrons
As such, the glass cup being a solid, consists of molecules fixed in space, while the liquid water consists of molecules which can translate within the portion of the volume of the glass filled with the water.
The floor exerts 20 N of force on the chair
Explanation:
We can answer this question by using Newton's third law, which states that:
<em>"When an object A exerts a force (called action) on an object B, object B exerts an equal and opposite force (called reaction) on object A"</em>
In this problem, we can identify:
- Object A as the chair
- Object B as the floor
This means that the force of 20 N exerted by the chair on the floor is the action, and so the force exerted by the floor on the chair is the reaction. Newton's third law states that these two forces are equal and opposite: therefore, the force exerted by the floor on the chair is also 20 N, but in the opposite direction.
Learn more about Newton's third law:
brainly.com/question/11411375
#LearnwithBrainly
Answer:
Statics which is when dealing with forces acting out on body and the possible motives of the body system. Kinetics which explains the motion that can occur in any type of situation.
Explanation:
Answer:
a) d₁ = 247.8 μm
d₂ = 205.3 μm
b) d₂ = 20.53 x 10⁻⁵ m = 205.3 μm
Explanation:
a)
The formula for Michelson Interferometer is derived to be:
d = mλ/2
where,
d = distance moved
m = no. of fringes
λ = wavelength of light
For JAN, we have following data
d = d₁
m = 818
λ = 606 nm = 606 x 10⁻⁹ m
Therefore,
d₁ = (818)(606 x 10⁻⁹ m)/2
<u>d₁ = 24.78 x 10⁻⁵ m = 247.8 μm</u>
For LINDA, we have following data
d = d₂
m = 818
λ = 502 nm = 502 x 10⁻⁹ m
Therefore,
d₂ = (818)(502 x 10⁻⁹ m)/2
<u>d₂ = 20.53 x 10⁻⁵ m = 205.3 μm</u>
b)
The resultant displacement can be found out from the difference between both displacement. And the direction of resultant displacement will be the same as the direction of greater displacement. Therefore,
Resultant Displacement = Δd = d₁ - d₂
Δd = 247.8 μm - 205.3 μm
<u>Δd = 42.5 μm (in the direction of JAN)</u>