Answer:
I think the answer is c. It would have difficulty moving.
Explanation:
The skeleton helps the vertebrate move and supports its body, so it will most likely have trouble moving.
Hello. This question is incomplete. The full question is:
"Consider the following reaction. 2NO(g) + 2H2(g) → N2(g) + 2H2O(g)
A proposed reaction mechanism is: NO(g) + NO(g) N2O2(g) fast N2O2(g) + H2(g) → N2O(g) + H2O(g) slow N2O(g) + H2(g) → N2(g) + H2O(g) fast
What is the rate expression? A. rate = k[H2] [NO]2 B. rate = k[N2O2] [H2] C. rate = k[NO]2 [H2]2 D. rate = k[NO]2 [N2O2]2 [H2]"
Answer:
A. rate = k[H2] [NO]2
Explanation:
A reaction mechanism is a term used to describe a set of phases that make up a chemical reaction. In these phases a detailed sequence of each step is shown, composed of several complementary reactions, which occur during a chemical reaction.
These mechanisms are directly related to chemical kinetics and allow changes in reaction rates to be observed in advance.
Reaction rate, on the other hand, refers to the speed at which chemical reactions occur.
Based on this, we can observe through the reaction mechanism shown in the question above, that the action "k [H2] [NO] 2" would have no changes in the reaction rate.
Answer:
N2C14
Explanation:
<em> determined the bond type by looking if it is a metal or nometal</em>
<em>Ionic Bond:NM+M</em>
<em>Covalent Bond:NM+NM</em>
Mole is equal to mass of the element divided by molar mass of the element. that is
mole=mass/molar mass
From periodic table calcium has a molar mass of 40 g/mol
moles is therefore =800g/40g/mol=20moles