Answer: There are now 2.07 moles of gas in the flask.
Explanation:
P= Pressure of the gas = 697 mmHg = 0.92 atm (760 mmHg= 1 atm)
V= Volume of gas = volume of container = ?
n = number of moles = 1.9
T = Temperature of the gas = 21°C=(21+273)K= 294 K (0°C = 273 K)
R= Value of gas constant = 0.0821 Latm\K mol
When more gas is added to the flask. The new pressure is 775 mm Hg and the temperature is now 26 °C, but the volume remains same.Thus again using ideal gas equation to find number of moles.
P= Pressure of the gas = 775 mmHg = 1.02 atm (760 mmHg= 1 atm)
V= Volume of gas = volume of container = 49.8 L
n = number of moles = ?
T = Temperature of the gas = 26°C=(26+273)K= 299 K (0°C = 273 K)
R= Value of gas constant = 0.0821 Latm\K mol
Thus the now the container contains 2.07 moles.
Answer:
C:
Explanation:
we can use the molarity equation
so to find M we plug in what we know, which is 6 moles of NaCl and 2 L of water, which gives us:
Atoms are made up of three subatomic particles called protons, neutrons, and electrons.
Protons and neutrons are located in the nucleus.
All protons have a positive charge.
All neutrons have no charge or are neutral.
Electrons orbit around the nucleus and have a negative charge.
Answer:
Mg(s) + 2H⁺(aq) ⟶ Mg²⁺(aq) + H₂(g)
Explanation:
A net ionic equation shows all the ionic substances as ions and shows the correct state of each substance.
Phosphorus (5+), can have 5 bonds. It will have a double bond with Oxygen (2-) and single bonds with Chlorine (1-)
POCl3
* the 3 is a subscript