Answer:
Choice C is not equivalent to 2.50 miles.
Explanation:
The given data is now converted into feet, inches, kilometers, yards and centimeters:
mi - ft
![x = (2.50\,mi)\cdot \left(5280\,\frac{ft}{mi} \right)](https://tex.z-dn.net/?f=x%20%3D%20%282.50%5C%2Cmi%29%5Ccdot%20%5Cleft%285280%5C%2C%5Cfrac%7Bft%7D%7Bmi%7D%20%5Cright%29)
![x = 13200\,ft](https://tex.z-dn.net/?f=x%20%3D%2013200%5C%2Cft)
(Choice A)
mi - in
![x = (2.50\,mi)\cdot \left(5280\,\frac{ft}{mi} \right)\cdot \left(12\,\frac{in}{ft} \right)](https://tex.z-dn.net/?f=x%20%3D%20%282.50%5C%2Cmi%29%5Ccdot%20%5Cleft%285280%5C%2C%5Cfrac%7Bft%7D%7Bmi%7D%20%5Cright%29%5Ccdot%20%5Cleft%2812%5C%2C%5Cfrac%7Bin%7D%7Bft%7D%20%5Cright%29)
![x = 158400\,in](https://tex.z-dn.net/?f=x%20%3D%20158400%5C%2Cin)
(Choice B)
mi - km
![x = (2.50\,mi)\cdot \left(1.61\,\frac{km}{mi} \right)](https://tex.z-dn.net/?f=x%20%3D%20%282.50%5C%2Cmi%29%5Ccdot%20%5Cleft%281.61%5C%2C%5Cfrac%7Bkm%7D%7Bmi%7D%20%5Cright%29)
(Different from Choice C)
mi - yd
![x = (2.50\,mi)\cdot \left(5280\,\frac{ft}{mi}\right) \cdot \left(\frac{1}{3}\,\frac{yd}{ft} \right)](https://tex.z-dn.net/?f=x%20%3D%20%282.50%5C%2Cmi%29%5Ccdot%20%5Cleft%285280%5C%2C%5Cfrac%7Bft%7D%7Bmi%7D%5Cright%29%20%5Ccdot%20%5Cleft%28%5Cfrac%7B1%7D%7B3%7D%5C%2C%5Cfrac%7Byd%7D%7Bft%7D%20%20%5Cright%29)
![x = 4400\,yd](https://tex.z-dn.net/?f=x%20%3D%204400%5C%2Cyd)
(Choice D)
mi - cm
![x = (2.50\,mi)\cdot \left(1.61\,\frac{km}{mi} \right)\cdot \left(100000\,\frac{cm}{km}\right)](https://tex.z-dn.net/?f=x%20%3D%20%282.50%5C%2Cmi%29%5Ccdot%20%5Cleft%281.61%5C%2C%5Cfrac%7Bkm%7D%7Bmi%7D%20%5Cright%29%5Ccdot%20%5Cleft%28100000%5C%2C%5Cfrac%7Bcm%7D%7Bkm%7D%5Cright%29)
![x = 402500\,cm](https://tex.z-dn.net/?f=x%20%3D%20402500%5C%2Ccm)
(Choice E)
Choice C is not equivalent to 2.50 miles.
The efficiency of an ideal Carnot heat engine can be written as:
![\eta = 1- \frac{T_{cold}}{T_{hot}}](https://tex.z-dn.net/?f=%5Ceta%20%3D%201-%20%20%5Cfrac%7BT_%7Bcold%7D%7D%7BT_%7Bhot%7D%7D%20)
where
![T_{cold}](https://tex.z-dn.net/?f=T_%7Bcold%7D)
is the temperature of the cold region
![T_{hot}](https://tex.z-dn.net/?f=T_%7Bhot%7D)
is the temperature of the hot region
For the engine in our problem, we have
![T_{cold}=300 K](https://tex.z-dn.net/?f=T_%7Bcold%7D%3D300%20K)
and
![T_{hot}=400 K](https://tex.z-dn.net/?f=T_%7Bhot%7D%3D400%20K)
, so the efficiency is
Because they are mentally trying to extinguish the negative things in their lives and focus on the positive things
Answer:
![W_{drag} = 4.223\,J](https://tex.z-dn.net/?f=W_%7Bdrag%7D%20%3D%204.223%5C%2CJ)
Explanation:
The situation can be described by the Principle of Energy Conservation and the Work-Energy Theorem:
![U_{g,A}+K_{A} = U_{g,B} + K_{B} + W_{drag}](https://tex.z-dn.net/?f=U_%7Bg%2CA%7D%2BK_%7BA%7D%20%3D%20U_%7Bg%2CB%7D%20%2B%20K_%7BB%7D%20%2B%20W_%7Bdrag%7D)
The work done on the ball due to drag is:
![W_{drag} = (U_{g,A}-U_{g,B})+(K_{A}-K_{B})](https://tex.z-dn.net/?f=W_%7Bdrag%7D%20%3D%20%28U_%7Bg%2CA%7D-U_%7Bg%2CB%7D%29%2B%28K_%7BA%7D-K_%7BB%7D%29)
![W_{drag} = m\cdot g\cdot (h_{A}-h_{B})+ \frac{1}{2}\cdot m \cdot (v_{A}^{2}-v_{B}^{2})](https://tex.z-dn.net/?f=W_%7Bdrag%7D%20%3D%20m%5Ccdot%20g%5Ccdot%20%28h_%7BA%7D-h_%7BB%7D%29%2B%20%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20m%20%5Ccdot%20%28v_%7BA%7D%5E%7B2%7D-v_%7BB%7D%5E%7B2%7D%29)
![W_{drag} = (0.599\,kg)\cdot (9.807\,\frac{m}{s^{2}} )\cdot (2.18\,m-3.10\,m)+\frac{1}{2}\cdot (0.599\,kg)\cdot [(7.05\,\frac{m}{s} )^{2}-(4.19\,\frac{m}{s} )^{2}]](https://tex.z-dn.net/?f=W_%7Bdrag%7D%20%3D%20%280.599%5C%2Ckg%29%5Ccdot%20%289.807%5C%2C%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%7D%20%29%5Ccdot%20%282.18%5C%2Cm-3.10%5C%2Cm%29%2B%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%280.599%5C%2Ckg%29%5Ccdot%20%5B%287.05%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%29%5E%7B2%7D-%284.19%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%29%5E%7B2%7D%5D)
![W_{drag} = 4.223\,J](https://tex.z-dn.net/?f=W_%7Bdrag%7D%20%3D%204.223%5C%2CJ)
Answer:
Law of refraction
Explanation:
An experiment to analyze the refraction of light in water can easily be performed with a laser pointer and protractor.
We throw the fishing rod line into the water, place the protractor at the point where the line touches the water and use the direction of the line for the direction of the laser pointer (on), the laser is visible by the reflection on the particles in the air.
The vertical line is called Normal and all angles must be measured with respect to this reference in optics.
Having these angles and the refractive index of water we can use the law of refraction
n₁ sin θ₁ = n₂ sin θ₂
θ₂ =
we can repeat several times to analyze several different input points (different angles) and to decrease the errors in the measurements.
the refractive index of air is n1 = 1 and n2= 1.33 (water)