Answer: 16 inches.
Step-by-step explanation:
given data:
length of string A = 80 centimeters.
length of string B = 64 centimeters.
step 1
we solve for the Highest common denominator between them.
highest common denominator = 16.
what this represents is that no string would be cut more than 16inches so they can all have equal lengths at the end of cutting.
Answer:
$1,109.62
Step-by-step explanation:
Let's first compute the <em>future value FV.</em>
In order to see the rule of formation, let's see the value (in $) for the first few years
<u>End of year 0</u>
1,000
<u>End of year 1(capital + interest + new deposit)</u>
1,000*(1.09)+10
<u>End of year 2 (capital + interest + new deposit)</u>
(1,000*(1.09)+10)*1.09 +10 =

<u>End of year 3 (capital + interest + new deposit)</u>

and we can see that at the end of year 50, the future value is

The sum

is the <em>sum of a geometric sequence </em>with common ratio 1.09 and is equal to

and the future value is then

The <em>present value PV</em> is

rounded to the nearest hundredth.
Answer:
the area would be 36(pi) since you can't find out the exact value of pi (22/7) and where it would terminate so thats the most exact answer you can get. The circumference would be
Step-by-step explanation:
12/2 = 6
Area = (pi)radius^2
6^2 = 36
36(pi)
Circumference: (pi)d
12(pi)
For approximate area you multiply r^2 by 3.14
For approximate circumference you multiply diameter by 3.14
The height of the <em>water</em> depth is h = 14 + 6 · sin (π · t/6 + π/2), where t is in hours, and the height of the Ferris wheel is h = 21 + 19 · sin (π · t/20 - π/2), where t is in seconds. Please see the image to see the figures.
<h3>How to derive equations for periodical changes in time</h3>
According to the two cases described in the statement, we have clear example of <em>sinusoidal</em> model for the height as a function of time. In this case, we can make use of the following equation:
h = a + A · sin (2π · t/T + B) (1)
Where:
- a - Initial position, in meters.
- A - Amplitude, in meters.
- t - Time, in hours or seconds.
- T - Period, in hours or seconds.
- B - Phase, in radians.
Now we proceed to derive the equations for each case:
Water depth (u = 20 m, l = 8 m, a = 14 m, T = 12 h):
A = (20 m - 8 m)/2
A = 6 m
a = 14 m
Phase
20 = 14 + 6 · sin B
6 = 6 · sin B
sin B = 1
B = π/2
h = 14 + 6 · sin (π · t/6 + π/2), where t is in hours.
Ferris wheel (u = 40 m, l = 2 m, a = 21 m, T = 40 s):
A = (40 m - 2 m)/2
A = 19 m
a = 21 m
Phase
2 = 21 + 19 · sin B
- 19 = 19 · sin B
sin B = - 1
B = - π/2
h = 21 + 19 · sin (π · t/20 - π/2), where t is in seconds.
Lastly, we proceed to graph each case in the figures attached below.
To learn more on sinusoidal models: brainly.com/question/12060967
#SPJ1