Find the total cost of producing 5 widgets. Widget Wonders produces widgets. They have found that the cost, c(x), of making x widgets is a quadratic function in terms of x. The company also discovered that it costs $15.50 to produce 3 widgets, $23.50 to produce 7 widgets, and $56 to produce 12 widgets.
OK...so we have
a(7)^2 + b(7) + c = 23.50 → 49a + 7b + c = 23.50 (1)
a(3)^2 + b(3) + c = 15.50 → 9a + 3b + c = 15.50 subtracting the second equation from the first, we have
40a + 4b = 8 → 10a + b = 2 (2)
Also
a(12)^2 + b(12) + c = 56 → 144a + 12b + c = 56 and subtracting (1) from this gives us
95a + 5b = 32.50
And using(2) we have
95a + 5b = 32.50 (3)
10a + b = 2.00 multiplying the second equation by -5 and adding this to (3) ,we have
45a = 22.50 divide both sides by 45 and a = 1/2 and using (2) to find b, we have
10(1/2) + b = 2
5 + b = 2 b = -3
And we can use 9a + 3b + c = 15.50 to find "c"
9(1/2) + 3(-3) + c = 15.50
9/2 - 9 + c = 15.50
-4.5 + c = 15.50
c = 20
So our function is
c(x) = (1/2)x^2 - (3)x + 20
And the cost to produce 5 widgets is = $17.50
Answer:
1). a = 9.42 m
2). b = 6.37 m
3). c = 4.48 m
Step-by-step explanation:
In the figure attached,
By applying tangent rule in triangle ADE,
tan47 = 
c = 
c = 
c = 4.476
c ≈ 4.48 m
Now we apply the same rule in triangle ACE,
tan37° = 
b = 
b = 
b = 6.37 m
Now apply the tangent in triangle ABE,
tan27° = 
a = 
a = 
a = 9.42 m
Okay, so first you draw a picture and let x be the distance from point D to the rest stop. Then the distance from point to the rest stop is 8 - x
You know that the length of the new trail is y + z, where y is the distance from Ancaster to the rest stop and z is the distance from Dundas to the rest stop.
Now by the Pythagorean theorem, y^2 = 4^2 + x^2 and z^2 = 6^2 + (8 - x) ^2
So take square roots of these, add them, and minimize.
Note: I am assuming the path is perfectly straight, otherwise this approach fails.