The answer to your question is False, my good man! Hope this helps!
Answer:
The ancient Greeks believed that fire was one the four basic elements that composed all things in the universe. In the mythology of virtually every culture, fire is a sacred substance that gives life or power. Fire is not, in fact, a substance. When you gaze at the leaping flames of a campfire, you’re observing not an object, but a process – a chemical reaction. It’s the same chemical reaction that occurs when a cut apple left on the counter turns brown, when silver tarnishes or when an iron nail rusts.
That process is oxidation: combining oxygen with another substance. The defining difference between a fire and your half-eaten apple is speed: fire is an oxidation process that happens very fast, so that light, heat and sound are released — often with enough force and majesty to justify the ancients’ reverence.The sudden release of energy causes temperatures to rise, sometimes by thousands of degrees. And it also results in smoke, the toxic waste of fire’s leftovers.
The fire triangle and the fire tetrahedron
Fire TetrahedronThe fire triangle identifies the three needed components of fire:
fuel (something that will burn)
heat (enough to make the fuel burn)
and air (oxygen)
Explanation: i hope this helps sry its long
694,563,239 rounded to the nearest thousand is 694,563.
It's because the first digit from the right is for ones, second for tens, third for hundreds and fourth for thousands and that's the one that we should take a closer look at. You can round it either to 3 or 4, depends on the digit of hundreds. In this case 3239 is clearly closer to 3000 than 4000, that's why we round it to 694,563, not 694,564.
Answer:
The ΔG° is 29 kJ and the reaction is favored towards reactant.
Explanation:
Based on the given information, the ΔH°rxn or enthalpy change is 41.2 kJ, the ΔS°rxn or change in entropy is 42.1 J/K or 42.1 * 10⁻³ kJ/K. The temperature given is 289 K. Now the Gibbs Free energy change can be calculated by using the formula,
ΔG° = ΔH°rxn - TΔS°rxn
= 41.2 kJ - 289 K × 42.1 × 10⁻³ kJ/K
= 41.2 kJ - 12.2 kJ
= 29 kJ
As ΔG° of the reaction is positive, therefore, the reaction is favored towards reactant.