Answer:
0.292 g/mL.
Explanation:
From the question given above, the following data were obtained:
Mass of object = 28.1 g
Volume of object = 96.2 mL
Density of object =..?
Density of an object is simply defined as the mass of the object per unit volume of the object. Mathematically, it can be expressed as:
Density = mass / volume
With the above formula, we can obtain the density of the object as follow:
Mass of object = 28.1 g
Volume of object = 96.2 mL
Density of object =..?
Density = mass / volume
Density = 28.1 / 96.2
Density of object = 0.292 g/mL
Thus the density of the object is 0.292 g/mL
Answer:
0.0468 g.
Explanation:
- The decay of radioactive elements obeys first-order kinetics.
- For a first-order reaction: k = ln2/(t1/2) = 0.693/(t1/2).
Where, k is the rate constant of the reaction.
t1/2 is the half-life time of the reaction (t1/2 = 1620 years).
∴ k = ln2/(t1/2) = 0.693/(1620 years) = 4.28 x 10⁻⁴ year⁻¹.
- For first-order reaction: <em>kt = lna/(a-x).</em>
where, k is the rate constant of the reaction (k = 4.28 x 10⁻⁴ year⁻¹).
t is the time of the reaction (t = t1/2 x 8 = 1620 years x 8 = 12960 year).
a is the initial concentration (a = 12.0 g).
(a-x) is the remaining concentration.
∴ kt = lna/(a-x)
(4.28 x 10⁻⁴ year⁻¹)(12960 year) = ln(12)/(a-x).
5.54688 = ln(12)/(a-x).
Taking e for the both sides:
256.34 = (12)/(a-x).
<em>∴ (a-x) = 12/256.34 = 0.0468 g.</em>
Answer: It is an unsaturated solution
Explanation: This is because it has more solute than a normal solution.
<span>The number of moles of Cl- ions needed to combine completely with 0.25 mole of Mg+2 ions is:
0.50.</span>