Answer:
9.6 %
Explanation:
<u>Step 1: How to define percent error ? </u>
⇒ % error is the difference between a measured value and the known or accepted value
⇒Percent error is calculated using the following formula:
⇒%error = | Experimental value-theoretical value/theoretical value | x100%
⇔ this can be written as well as : error = (| Experimental value/ theoretical value | - | Theoretical value / Theoretical value | ) x100%
<u>Step 2: Calculate % error</u>
In this case, this means :
%error = ( |(4.45 cm - 4.06cm ) / 4.06cm | ) x100%
%error = 0.096 x100%
%error =9.6 %
The equivalency point is at the point of the titration where the amount of titrant added neutralize the solution. When it’s a strong acid strong base titration, the equivalence point will be 7. When it is a weak acid strong base, the equivalence point it more basic (the exact number depends on what acid and base you use). And when it is a strong acid weak base, the equivalence number is more acid (the exact number depends on what acid and base you use). Hope this helps!
Answer:
Cooling a substance causes molecules to slow down and get slightly closer together, occupying a smaller volume that results in an increase in density. Hot water is less dense and will float on room-temperature water. <u>Cold water is more dense and will sink in room-temperature water.</u>
<u></u>
Answer:
mass of HCl = 3.65 g
Explanation:
Data Given:
Moles of hydrochloric acid HCl = 0.1 mole
Mass in grams of hydrochloric acid HCl = ?
Solution:
Mole Formula
no. of moles = Mass in grams / molar mass
To find Mass in grams rearrange the above Formula
Mass in grams = no. of moles x molar mass . . . . . . . (1)
Molar mass of HCl = 1 + 35.5 = 36.5 g/mol
Put values in equation 1
Mass in grams = 0.1 mole x 36.5 g/mol
Mass in grams = 3.65 g
mass of HCl = 3.65 g
Answer: the ability to be dissolved, especially in water.
Explanation: I think the answer you've picked is right
Hope this helps