Answer:
An increase in entropy
Explanation:
In ice, the molecules are very well ordered because of the H-bonds. As ice melts, the intermolecular forces are broken (requires energy), but the order is interrupted (so entropy increases). Water is more random than ice, so ice spontaneously melts at room temperature.
Just think about this rationally. Melting ice (or anything) will require heat put in (this is called the latent heat of fusion), so you automatically know that the change in enthalpy is going to be positive. In order to make the reaction spontaneous, delta G, the Gibbs free energy has to be negative. So now look at the formula Delta(G) = Delta(H) - T*Delta*(S). If you know that g is negative, and H is positive, then it is only possible if -T*Delta(S) is negative. If that is positive, then Delta(S) has to be positive. So theres your answer :). An increase in entropy
(1) The melting of a crystalline solid is best depicted by the second graph. This is because, the second graph shows a horizontal line which means that for a while there was no change in temperature. This zone is the latent heat of fusion.
(2) The first graph shows the graph of a solid that is just heated but does not experience phase change. However, the second graph shows a solid that changes phase (from crystal/solid to liquid).
Answer:
covalent bond
Explanation:
a covalent bond forms when electrons are shared between two nonmetals
plz mark as the brainliest
Answer:
NaHCO3 → H2O + CO2 + Na2CO3
Explanation: