<h3>
Answer:</h3>
42960 years
<h3>
Explanation:</h3>
<u>We are given;</u>
- Remaining mass of C-14 in a bone is 0.3125 g
- Original mass of C-14 on the bone is 80.0 g
- Half life of C-14 is 5370 years
We are required to determine the age of the bone;
- Remaining mass = Original mass × 0.5^n , where n is the number of half lives.
Therefore;
0.3125 g = 80.0 g × 0.5^n
3.90625 × 10^-3 = 0.5^n
- Introducing logarithm on both sides;
log 3.90625 × 10^-3 = n log 0.5
Solving for n
n = log 3.90625 × 10^-3 ÷ log 0.5
= 8
- Therefore, the number of half lives is 8
- But, 1 half life is 5370 years
- Therefore;
Age of the rock = 5370 years × 8
= 42960 years
Thus, the bone is 42960 years old
Answer :
Option D) 2.50 X
Mol/(L s)
Explanation: While calculating the average reaction rate for the given reaction in terms of Cl;

.
using the rate equation which is;

![\frac{delta [Cl]}{delta t}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bdelta%20%5BCl%5D%7D%7Bdelta%20t%7D%20)
=

=
2.50 X
Mol/(L s)
The answer is Cellular respiration because it occurs in the cytoplasm of both plants and animals.
Answer:
The amount of heat released is 11.3 KJ
Explanation:
H20(g) -> H20(l) + heat
This reaction is changing state from gaseous to liquid without changing the temperature. This heat is know as Latent heat. It is the energy required for a phase change.
Heat released by 5 g of water vapor (Q) = M × L
where M = mass of vapor
L= latent heat
Latent heat can be divide into 2
- Latent heat of fusion
- Latent heat of vaporization
Since we are change the gaseous state to liquid, we will be working with Latent heat of vaporization which has a value of 22.6 x 10 ∧5 J/kg
(Q) = M × L
= 0.005 x 22.6 x 10 ∧5
= 11300 J
= 11.3 KJ