Answer:
t = 2.13 10-10 s
, d = 6.39 cm
Explanation:
For this exercise we use the definition of refractive index
n = c / v
Where n is the refraction index, c the speed of light and v the speed in the material medium.
The refractive indices of ice and crown glass are 1.13 and 1.52, respectively, therefore the speed of the beam in the material medium is
v = c / n
As the beam strikes perpendicularly, the beam path is equal to the distance of the leaves, there is no refraction, so we can use the uniform motion relationships
v = d / t
t = d / v
t = d n / c
Let's look for the times on each sheet
Ice
t₁ = 1.4 10⁻² 1.31 / 3 10⁸
t₁ = 0.6113 10⁻¹⁰ s
Crown glass (BK7)
t₂ = 3.0 10⁻² 1.52 / 3.0 10⁸
t₂ = 1.52 10⁻¹⁰ s
Time is a scalar therefore it is additive
t = t₁ + t₂
t = (0.6113 + 1.52) 10⁻¹⁰
t = 2.13 10-10 s
The distance traveled by this time in a vacuum would be
d = c t
d = 3 10⁸ 2.13 10⁻¹⁰
d = 6.39 10⁻² m
d = 6.39 cm
Taking into account the rule of three for the change of units, the mass of the book is 45600 miligrams.
First of all, the rule of three is a mathematical tool that helps you quickly solve proportionality problems.
Having three known values and one unknown, a proportional relationship is established between all of them in order to find the fourth term of the proportion.
If the relationship between the magnitudes is direct (when one magnitude increases, so does the other; or when one magnitude decreases, so does the other), the rule of three is applied as follows, where a, b and c are known values and x is the unknown to calculate:
a → b
c → x
So: 
Being 1 kg equivalent to 1000000 milligrams, In this case the rule of three is applied as follows: if 1 kg equals 1000000 milligrams, 4.56×10⁻² kg equals how many milligrams?
1 kg → 1000000 milligrams
4.56×10⁻² kg → x
So:

<u><em>x=45600 miligrams</em></u>
In summary, the mass of the book is 45600 miligrams.
Learn more:
Answer:
550 kg
Explanation:
mass = E / gh
= 33000/60
=550
plzzz......
mark it as a brilliant answer
Hello :))
Mass is dependent on the inertia of an object:))
Hope this helps
If I can't open the lid of a jelly jar, I'd keep trying and if I can't open the lid of a jelly jar after the MANY tries I took, I'd ask for help.