Let m = 65 kg, the mass of the boy and skateboard.
Let v = speed of the boy and skateboard.
The momentum is
P = mv = (65 kg)*(v m/s) = 275 (kg-m)/s²
v = 275/65 = 4.23 m/s
Answer: 4.23 m/s
Answer A, low energy and long wavelength.
Answer:
a) We could not see it at all.
Explanation:
The most distant object that can be seen is the andromeda galaxy, which we may have a slight view of. The andromeda galaxy is a large galaxy that along with the previous two is also part of the local group. Spiral-type galaxy that is approximately 250,000 light years in diameter (more than twice the diameter of the Milky Way!) And is about 2.9 million light years away from our galaxy. Because of its distance, we have difficulty visualizing this galaxy, we would have this difficulty even if the andromeda galaxy was in the center of the Milky Way, but maintaining its current distance. That is, even if the andromeda galaxy were located in the same direction in space as the center of the Milky Way (but still at its current distance), we could not see it at all.
Answer:
the density makes something float or sink below water its the "water weight "
Explanation:
Answer:
The speed of the water shoot out of the hole is 20 m/s.
(d) is correct option.
Explanation:
Given that,
Height = 20 m
We need to calculate the velocity
Using formula Bernoulli equation

Where,
v₁= initial velocity
v₂=final velocity
h₁=total height
h₂=height of the hole from the base
Put the value into the formula




Hence, The speed of the water shoot out of the hole is 20 m/s.