Answer:
C
Explanation:
It has to travel 600 light years before we would be able to observe the explosion.
Alpha emission is the process results in a change in mass number. Option B is correct.
<h3>What is mass number?</h3>
The total number of protons and neutrons in an atomic nucleus is known as the mass number, often known as the atomic mass number or nucleon number.
It's about the same as the atom's atomic mass, expressed in atomic mass units.
The alpha particle is a helium nucleus with two protons and two neutrons in an alpha decay or alpha emission. The number of protons and neutrons is reduced by two as a result of this action.
The quantity of protons and neutrons is affected by gamma emission descent. Also, while electron capture has no effect on the number of neutrons, it does raise the 1 also number of protons by one.
Alpha emission is the process results in a change in mass number.
Hence option B is correct.
To learn more about the mass number, refer:
brainly.com/question/4408975
#SPJ1
Answer:

Explanation:
Given that,
The mass of a golf ball, m = 40 g = 0.04 kg
Its angular velocity, 
The radius of the sphere is 2.5 cm or 0.025 m
We need to find the magnitude of the angular momentum of the ball. It is given by the formula as follows:

Where I is moment of inertia
For sphere, 

So, the magnitude of the angular momentum of the sphere is
.
Answer:
Red light
Explanation:
The energy emitted during an electron transition in an atom of hydrogen is given by

where
is the energy of the lowest level
n1 and n2 are the numbers corresponding to the two levels
Here we have
n1 = 3
n2 = 2
So the energy of the emitted photon is

Converting into Joules,

And now we can find the wavelength of the emitted photon by using the equation

where h is the Planck constant and c is the speed of light. Solving for
,

And this wavelength corresponds to red light.