Answer:
T = 0.003 s
(Period is written as T)
Explanation:
Period = time it takes for one wave to pass (measured in seconds)
frequency = number of cycles that occur in 1 second
(measured in Hz / hertz / 1 second)
Period : T
frequency : f
So, if we know that the frequency of a wave is 300 Hz, we can find the period of the wave from the relation between frequency and period
T =
f = 
to find the period (T) of this wave, we need to plug in the frequency (f) of 300
T = 
T = 0.00333333333
So, the period of a wave that has a frequency of 300 Hz is 0.003 s
[the period/T of this wave is 0.003 s]
Answer:
conductor
Explanation:
A "conductor" is a material that allows the charges to pass freely from one body to the other. This causes a movement among the electrons and this means that<em> the charge will be passed entirely to the object receiving it.</em> This is also called <em>"conductive material."</em>
Examples of conductors are: <em>copper, aluminum, gold, silver, seawater, etc.</em>
The opposite of conductors are called "insulators." These do not allow the free movement of charges from one object to the other.
Examples of insulators: <em>plastic, rubber, paper, glass, wool, dry air, etc.</em>
a) 2.75 s
The vertical position of the ball at time t is given by the equation

where
h = 4 m is the initial height of the ball
u = 12 m/s is the initial velocity of the ball (upward)
g = 9.8 m/s^2 is the acceleration of gravity (downward)
We can find the time t at which the ball reaches the ground by substituting y=0 into the equation:

This is a second-order equation. By solving it for t, we find:
t = -0.30 s
t = 2.75 s
The first solution is negative, so we discard it; the second solution, t = 2.75 s, is the one we are looking for.
b) -15.0 m/s (downward)
The final velocity of the ball can be calculated by using the equation:

where
u = 12 m/s is the initial (upward) velocity
g = 9.8 m/s^2 is the acceleration of gravity (downward)
t is the time
By subsisuting t = 2.75 s, we find the velocity of the ball as it reaches the ground:

And the negative sign means the direction is downward.
Displacement is B) the shortest distance between the starting point and the ending point of a motion
Explanation:
Displacement is a vector quantity; it is a vector connecting the initial position to the final position of motion of an object.
Since it is a vector, it has both a magnitude and a direction:
- The magnitude of the displacement is the length of the vector, therefore it corresponds to the shortest distance in a straight line between the starting point and the ending point of the motion
- The direction goes from the starting point to the ending point
Therefore, the correct answer is
B) the shortest distance between the starting point and the ending point of a motion
Note that displacement is very different from distance. Consider for example an object moving in a circle, returning to its initial position: in this case, the distance covered by the object is not zero (it is the length of the circle), however the displacement is zero, because the initial position corresponds to the ending position.
Learn more about distance and displacement:
brainly.com/question/3969582
#LearnwithBrainly