Answer:
a = -5.10 m/s^2
her acceleration on the rough ice is -5.10 m/s^2
Explanation:
The distance travelled on the rough ice is equal to the width of the rough ice.
distance d = 5.0 m
Initial speed u = 9.2 m/s
Final speed v = 5.8 m/s
The time taken to move through the rough ice can be calculated using the equation of motion;
d = 0.5(u+v)t
time t = 2d/(u+v)
Substituting the given values;
t = 2(5)/(9.2+5.8)
t = 2/3 = 0.66667 second
The acceleration is the change in velocity per unit time;
acceleration a = ∆v/t
a = (v-u)/t
Substituting the values;
a = (5.8-9.2)/0.66667
a = -5.099974500127
a = -5.10 m/s^2
her acceleration on the rough ice is -5.10 m/s^2
Part a)
Magnitude of electric field is given by force per unit charge



Part b)
Electrostatic force on the proton is given as
F = qE


PART C)
Gravitational force is given by



PART d)
Ratio of electric force to weight


Answer:
The least uncertainty in the momentum component px is 1 × 10⁻²³ kg.m.s⁻¹.
Explanation:
According to Heisenberg's uncertainty principle, the uncertainty in the position of an electron (σx) and the uncertainty in its linear momentum (σpx) are complementary variables and are related through the following expression.
σx . σpx ≥ h/4π
where,
h is the Planck´s constant
If σx = 5 × 10⁻¹²m,
5 × 10⁻¹²m . σpx ≥ 6.63 × 10⁻³⁴ kg.m².s⁻¹/4π
σpx ≥ 1 × 10⁻²³ kg.m.s⁻¹
Answer:
51.82
Explanation:
First of all, let's convert both vectors to cartesian coordinates:
Va = 36 < 53° = (36*cos(53), 36*sin(53))
Va = (21.67, 28.75)
Vb = 47 < 157° = (47*cos(157), 47*sin(157))
Vb = (-43.26, 18.36)
The sum of both vectors will be:
Va+Vb = (-21.59, 47.11) Now we will calculate the module of this vector:
