Answer:
1 joule = 0.737 foot-pound
Joule is the unit of work.
1 J = 1 N·m
In SI units
1 J = 1 kg· m/s²
0.737 foot-pound is the amount of work to raise 0.737 pounds one foot or raising one pound to 0.737 ft.
Answer:
60 rad/s
Explanation:
∑τ = Iα
Fr = Iα
For a solid disc, I = ½ mr².
Fr = ½ mr² α
α = 2F / (mr)
α = 2 (20 N) / (0.25 kg × 0.30 m)
α = 533.33 rad/s²
The arc length is 1 m, so the angle is:
s = rθ
1 m = 0.30 m θ
θ = 3.33 rad
Use constant acceleration equation to find ω.
ω² = ω₀² + 2αΔθ
ω² = (0 rad/s)² + 2 (533.33 rad/s²) (3.33 rad)
ω = 59.6 rad/s
Rounding to one significant figure, the angular velocity is 60 rad/s.

According to above question ~
Let's find the charge (q) by using formula ~
Hence, 12 coulombs of charge flow past any point in the wire in 3 seconds
Answer:
5760 J
Explanation:
From the question given above, the following data were obtained:
Mass of block = 48 kg
Height (h) = 12 m
Gravitational field strength (g) = 10 N/Kg
Gravitational potential energy (PE) =?
The gravitational potential energy stored by the block can simply be obtained as follow:
PE = mgh
PE = 48 × 10 × 12
PE = 5760 J
Therefore, the gravitational potential energy stored by the block is 5760 J
Answer:
a) Temperatura, b) Temperature, c) Constant
, d) None of these
, e) Gibbs enthalpy and free energy (G)
Explanation:
a) the expression for ideal gases is PV = nRT
Temperature
b) The internal energy is E = K T
Temperature
c) S = ΔQ/T
In an isolated system ΔQ is zero, entropy is constant
Constant
d) all parameters change when changing status
None of these
e) Gibbs enthalpy and free energy