===> Distance fallen from rest in free fall =
(1/2) (acceleration) (time²)
(122.5 m) = (1/2) (9.8 m/s²) (time²)
Divide each side by (4.9 m/s²): (122.5 m / 4.9 m/s²) = time²
(122.5/4.9) s² = time²
Take the square root of each side: 5.0 seconds
===> (Accelerating at 9.8 m/s², he will be dropping at
(9.8 m/s²) x (5.0 s) = 49 m/s
when he goes 'splat'. We'll need this number for the last part.)
===> With no air resistance, the horizontal component of velocity
doesn't change.
Horizontal distance = (10 m/s) x (5.0 s) = 50 meters .
===> Impact velocity = (10 m/s horizontally) + (49 m/s vertically)
= √(10² + 49²) = 50.01 m/s arctan(10/49)
= 50.01 m/s at 11.5° from straight down,
away from the base of the cliff.
The correct expression for the maximum speed of the object during its motion is
.
<h3>
Maximum speed of the object</h3>
The maximum speed of the object is determined using the following formulas;
v(max) = Aω
where;
- A is the amplitude of the motion
- ω is angular speed
The maximum speed of the object can also be obtained from the maximum net force on the object,
F = ma
where;
- F is the maximum net force
- a is the acceleration
- m is mass of the object
F = m(v/t)
mv = Ft
v = Ft/m
Thus, the correct expression for the maximum speed of the object during its motion is
.
Learn more about maximum speed here: brainly.com/question/4931057
Answer:
2,500 Joules (J) or Newton Meter (N M)
Explanation:
Work = Force x Distance
The force in this equation is 500 Newtons. The distance (displacement) is 5 meters. Plug it into the equation above.
Work = 5m x 500n
Work = 2,500 Joules or Newton-Meters.
Therefore 2,500 Joules or Newton Meters of work is done on an object.
There were 2 people
Tomas Edison
Joseph Swan
Tomas Edison invented the first practical incandescent lightbulb.
Sir Joseph Swan is most famous for his role in the development of the first incandescent lightbulb.
I think b is the answer but im not 100% sure