Answer:
Every object in space exerts a gravitational pull on every other
explanation : gravity influences the paths taken by everything traveling through space. It is the glue that holds together entire galaxies. It keeps planets in orbit. It can also cause life-destroying asteroids to crash into planets..
Answer:
Vx = 35 x cos(13deg)
Vy = 35 x sin(13deg) - gt
(g is acceleration due to gravity =~9.8 meter/second^2, t is time in second)
Explanation:
The tiger leaps up, then x and y component of its velocity are:
Vx = Vo x cos(alpha)
Vy = Vo x sin(alpha) - gt
(Vo is tiger's initial velocity, alpha is angle between its leaping direction and horizontal plane)
Hope this helps!
B4 the tackle:
<span>The linebacker's momentum = 115 x 8.5 = 977.5 kg m/s north </span>
<span>and the halfback's momentum = 89 x 6.7 = 596.3 kg m/s east </span>
<span>After the tackle they move together with a momentum equal to the vector sum of their separate momentums b4 the tackle </span>
<span>The vector triangle is right angled: </span>
<span>magnitude of final momentum = √(977.5² + 596.3²) = 1145.034 kg m/s </span>
<span>so (115 + 89)v(f) = 1145.034 ←←[b/c p = mv] </span>
<span>v(f) = 5.6 m/s (to 2 sig figs) </span>
<span>direction of v(f) is the same as the direction of the final momentum </span>
<span>so direction of v(f) = arctan (596.3 / 977.5) = N 31° E (to 2 sig figs) </span>
<span>so the velocity of the two players after the tackle is 5.6 m/s in the direction N 31° E </span>
<span>btw ... The direction can be given heaps of different ways ... N 31° E is probably the easiest way to express it when using the vector triangle to find it</span>
Answer: Charles's law
Explanation:
Charles's law is one of the gas laws, and it explains the effect of temperature changes on the volume of a given mass of gas at a constant pressure. Usually, the volume of a gas decreases as the temperature decreases and increases as the temperature also increases.
Mathematically, Charles's law can be expressed as:
V ∝ T
V = kT or (V/T) = k
where v is volume, T is temperature in Kelvin, and a k is a constant.