The wave takes 11.3 s to cover a distance of 26.5 m, so its speed is:

The distance between two consecutive crests is 3 m, and this corresponds to the wavelength of the wave. To find its frequency, we can use the relationship between the speed v, the wavelength

and the frequency f:
Answer:
Current = 0.063 Amperes
Explanation:
Let the three resistors be R1, R2, and R3 respectively.
Given the following data;
R1 = 25.0Ω,
R2 = 30.0Ω
R3 = 40.0Ω
Voltage = 6 Volts
First of all, we would determine the equivalent or total resistance;
Total resistance (in series) = R1 + R2 + R3
Total resistance = 25.0Ω + 30.0Ω + 40.0Ω
Total resistance = 95 Ω
Next, we find the current flowing through the circuit;
Voltage = current * resistance
Substituting into the formula, we have;
6 = current * 95
Current = 6/95
Current = 0.063 Amperes
Answer:
Rutherford bombarded aluminum foil with beam of light known as alpha particles. The mass of this alpha particle is equivalent to helium atom.
Explanation:
Rutherford bombarded aluminum foil with beam of light known as alpha particles. The mass of this alpha particle is equivalent to helium atom.
When this alpha particles were made to strike the aluminum foil, some passed through the foil, some were reflected and speed others changed.
The ones reflected encountered heavier particle known as the nucleus, preventing them from passing through it. The whole observations indicated that atom is not is uniformly charged sphere as proposed by J.J Thomson.
Rutherford proposed new model known as the Planetary model of atom, which described atom as containing a nucleus which is revolved by electron, just like planets revolve round the sun. And this nucleus contains opposite charge to electron which is proton, to balance the motion.
A coil of wire with a current flowing thru it becomes a magnet
Answer:
9.73 x 10⁻¹⁰ m
Explanation:
According to Heisenberg uncertainty principle
Uncertainty in position x uncertainty in momentum ≥ h / 4π
Δ X x Δp ≥ h / 4π
Δp = mΔV
ΔV = Uncertainty in velocity
= 2 x 10⁻⁶ x 3 / 100
= 6 x 10⁻⁸
mass m = 0.9 x 10⁻¹⁵ x 10⁻³ kg
m = 9 x 10⁻¹⁹
Δp = mΔV
= 9 x 10⁻¹⁹ x 6 x 10⁻⁸
= 54 x 10⁻²⁷
Δ X x Δp ≥ h / 4π
Δ X x 54 x 10⁻²⁷ ≥ h / 4π
Δ X = h / 4π x 1 / 54 x 10⁻²⁷
= 
= 9.73 x 10⁻¹⁰ m