Im not so sure but it should be the
instantaneous speed
For this problem, we use the derived equations for rectilinear motion at constant acceleration. The equations used for this problem are:
a = (v - v₀)/t
2ax = v² - v₀²
where
a is the acceleration
x is the distance
v is the final velocity
v₀ is the initial velocity
t is the time
The solution is as follows;
a = (60mph - 30 mph)/(3 s * 1 h/3600 s)
a = 36,000 mph²
2(36,000 mph²)(x) = 60² - 30²
Solving for x,
x = 0.0375 miles
<span>Antimony I am pretty sure is one. </span>
I think the answer would be: The G-note's wavelength is longer
Here are the formula to calculate wavelength
Wavelength = Wave speed/Frequency
Which indicates that the wavelength will become larger as the frequency became smaller.
Answer:
Q = 12.466μC
Explanation:
For the particle to execute a circular motion, the electrostatic force must be equal to the centripetal force:

Solving for Q:

Taking special care of all units, we can calculate the value of the charge:
Q = 12.466μC