<h3><u>Answer;</u></h3>
Frequency
<h3><u>Explanation;</u></h3>
- <em><u>Waves are disturbances that travel through a material medium. There are several characteristics of waves, which includes; wavelength, frequency, period and amplitude. </u></em>
- Amplitude is the maximum displacement of wave particles, or simply the height of the wave, measured in meters.
- Wavelength is the distance between adjacent crests or troughs in a transverse wave or between two successive rarefaction or compressions in a longitudinal wave, measured in meters.
- Period is the time it takes for one complete wave to pass a given point, measured in seconds.
- <em><u>Frequency is the number of complete waves or cycles that pass a point in one second, measured is inverse seconds, or Hertz (Hz).</u></em>
Answer:
Wavelength, 
Explanation:
Given that,
Mass of the particle, 
Acceleration of the particle, 
Time, t = 5 s
It starts from rest, u = 0
The De Broglie wavelength is given by :

v = a × t



Hence, this is the required solution.
Answer:
<em>Infrared telescope and camera</em>
<em></em>
Explanation:
An infrared telescope uses infrared light to detect celestial bodies. The infrared radiation is one of the known forms of electromagnetic radiation. Infrared radiation is given off by a body possessing some form of heat. All bodies above the absolute zero temperature in the universe radiates some form of heat, which can then be detected by an infrared telescope, and infrared radiation can be used to study or look into a system that is void of detectable visible light.
Stars are celestial bodies that are constantly radiating heat. In order to see a clearer picture of the these bodies, <em>Infrared images is better used, since they are able to penetrate the surrounding clouds of dust,</em> and have located many more stellar components than any other types of telescope, especially in dusty regions of star clusters like the Trapezium cluster.
The last choice. Two arrows and the arrow up is shorter than the arrow down. Since the guy is falling and he’s opened his chute, he’s slowing down but he’s still falling meaning the force of gravity is stronger than the air resistance.
Answer:
Only the goalie is allowed inside the goal crease. The only exception when another player is allowed in the goal area is when they take off from outside the goal area, and shoots or passes the ball before landing. To avoid interference with other players, the player must then exit the goal area as soon as possible.
Explanation: