Answer:
go to the link quizzlet it will give you tha answer
Explanation:
Answer:
Explanation:18kt alloy contains
i) 75% of gold
rhogold=19.3g/cm^3
=75/100×19.3
=14.475g/cm^3
ii) 16% of silver
rhosilver=10.5g/cm^3
=16/100×10.5
=1.68g/cm^3
iii) 9% of copper
rhocopper =8.90g/cm^3
=9/100×8.9
=0.801g/cm^3
Overall density of 18kt gold
=(0.801+1.68+14.475)g/cm^3
=16.956g/cm^3
=17g/cm^3 to 3s.f
Answer:
The coefficient of kinetic friction between the puck and the ice is 0.11
Explanation:
Given;
initial speed, u = 9.3 m/s
sliding distance, S = 42 m
From equation of motion we determine the acceleration;
v² = u² + 2as
0 = (9.3)² + (2x42)a
- 84a = 86.49
a = -86.49/84
|a| = 1.0296
= ma
where;
Fk is the frictional force
μk is the coefficient of kinetic friction
N is the normal reaction = mg
μkmg = ma
μkg = a
μk = a/g
where;
g is the gravitational constant = 9.8 m/s²
μk = a/g
μk = 1.0296/9.8
μk = 0.11
Therefore, the coefficient of kinetic friction between the puck and the ice is 0.11
We use the equation of motion for vertical component,

Here,
is displacement of bullet,
is vertical initial velocity of bullet which is equal to zero because bullet was fired horizontally, and t is time of flight.
Therefore,

Given, 
Substituting the values, we get time of flight

Answer:
The intensity at 10° from the center is 3.06 × 10⁻⁴I₀
Explanation:
The intensity of light I = I₀(sinα/α)² where α = πasinθ/λ
I₀ = maximum intensity of light
a = slit width = 2.0 μm = 2.0 × 10⁻⁶ m
θ = angle at intensity point = 10°
λ = wavelength of light = 650 nm = 650 × 10⁻⁹ m
α = πasinθ/λ
= π(2.0 × 10⁻⁶ m)sin10°/650 × 10⁻⁹ m
= 1.0911/650 × 10³
= 0.001679 × 10³
= 1.679
Now, the intensity I is
I = I₀(sinα/α)²
= I₀(sin1.679/1.679)²
= I₀(0.0293/1.679)²
= 0.0175²I₀
= 0.0003063I₀
= 3.06 × 10⁻⁴I₀
So, the intensity at 10° from the center is 3.06 × 10⁻⁴I₀