To solve this problem we will apply the concepts related to volume, as a function of length and area, as of mass and density. Later we will take the same concept of resistance and resistivity, equal to the length per unit area. Once obtained from the known constants it will be possible to obtain the area by matching the two equations:
Mass of copper wire
Density
Resistively of copper 
Resistance (R) = 0.390\Omega
Volume is defined as,

(1)
We know that,


(2)
Multiplying equation we have




Therefore the length of the wire is 1.68m
A is the answerrrrrrrrrrrr
Hello,
The question states: <span>The Robinson projection map is considered very useful because...
The answer is

Hope this helped!
~FoodJunky
</span>
Answer:
1.925 μC
Explanation:
Charge: This can be defined as the product of the capacitance of a capacitor and the voltage. The S.I unit of charge is Coulombs (C)
The formula for the charge stored in a capacitor is given as,
Q = CV ................... Equation 1
Where Q = charge, C = Capacitor, V = Voltage.
Note: 1 μF = 10⁻⁶ F
Given: C = 0.55 μF = 0.55×10⁻⁶ F, V = 3.5 V.
Substitute into equation 1
Q = 0.55×10⁻⁶×3.5
Q = 1.925×10⁻⁶ C.
Q = 1.925 μC
Hence the charge on the plate = 1.925 μC
Answer:
b. Static > sliding > rolling friction.
Explanation:
Static friction is greater than sliding friction. It takes more force to get an object to start sliding than to keep it sliding.
Sliding friction is greater than rolling friction. There are fewer points of contact for a round surface compared to a flat one.