Explanation:
Formula which holds true for a leans with radii
and
and index refraction n is given as follows.
Since, the lens is immersed in liquid with index of refraction
. Therefore, focal length obeys the following.
and,
or,
= 32.4 cm
Using thin lens equation, we will find the focal length as follows.

Hence, image distance can be calculated as follows.


= 47.9 cm
Therefore, we can conclude that the focal length of the lens in water is 47.9 cm.
Answer:
Reflected
Explanation:
I do not have much context here, but reflection is what happens when the sun sets on the water. The rays hit the surface of the water and bounce off, known as refelction.
Have a nice day!
I hope this is what you are looking for, but if not - comment! I will edit and update my answer accordingly. (ノ^∇^)
- Heather
Answer:
The Flemings left hand rule is used to find the magnitude of a magnetic force
Explanation:
Fleming's left hand rule states that if the first three fingers are held mutually at right angles to one another, then the fore finger points into the direction of magnetic field the middle finger in the direction of current while the thumb points in the direction of force.
Mathematically
Magnetic Force F= BILsinθ
Where
B= magnetic field density Tesla
I= current
L= length of conductor
θ= angle of conductor with field
Answer:
a) (0, -33, 12)
b) area of the triangle : 17.55 units of area
Explanation:
<h2>
a) </h2>
We know that the cross product of linearly independent vectors
and
gives us a nonzero, orthogonal to both, vector. So, if we can find two linearly independent vectors on the plane through the points P, Q, and R, we can use the cross product to obtain the answer to point a.
Luckily for us, we know that vectors
and
are living in the plane through the points P, Q, and R, and are linearly independent.
We know that they are linearly independent, cause to have one, and only one, plane through points P Q and R, this points must be linearly independent (as the dimension of a plane subspace is 3).
If they weren't linearly independent, we will obtain vector zero as the result of the cross product.
So, for our problem:







<h2>B)</h2>
We know that
and
are two sides of the triangle, and we also know that we can use the magnitude of the cross product to find the area of the triangle:

so:




Kelvin is a base unit of temperature
scale from SI that defines as zero degree Kelvin (absolute zero). The absolute
zero is a hypothetical statement that all molecular movement stops because
there is no transient of energy for the molecules to move. When converting
temperature in degree Celsius to Kelvin, add 273. You are given 600K and you
are asked to find it in degrees Celsius.
T(K) = T(C) + 273
600 K = T(C) + 273
T(C) = 600 – 273
T(C) = 327 °C
<span>The answer is letter B.</span>