Answer:
The change in energy of the gas during the process is
joules.
Explanation:
We can represent this process by the First Law of Thermodynamics, in which gas does work on its surroundings and absorbs heat from there to describe its change in energy. In other words:

Where:
- Heat absorbed by the gas, measured in joules.
- Work done by the gas, measured in joules.
- Change in energy, measured in joules.
If we know that
and
, the change in energy of the gas is:


The change in energy of the gas during the process is
joules.
Answer:
c. Solar eclipses would be much more frequent.
Explanation:
The <u>ecliptic plane</u> is the apparent orbit that the sun describes around the earth (although it is the earth that orbits the sun), is the path the sun follows in earth's sky.
A <u>solar eclipse</u> occurs when the moon gets between the earth and the sun, so a shadow is cast on the earth because the light from the sun is blocked.
The reason why solar eclipses are not very frequent is because the moon's orbital plane is not in the same plane as the orbit of the earth around the sun, but rather that it is somewhat inclined with respect to it.
So <u>if both orbits were aligned, the moon would interpose between the sun and the earth more frequently, producing more solar eclipses.</u>
So, if the moon's orbital plane were exacly the same as the ecliptic plane solar eclipses would be more frequent.
the answer is: c.
Due to its polarity and hydrogen bonding water can absorb heat without a significant temperature change.. The high specific heat of water helps regulate the rate at which air changes temperature, which is why the temperature change between seasons is gradual instead of sudden, especially near the oceans.
We can use renewable sources