In a triangle, the nomenclature is that a variable side a is opposite of the angle A. we can use the cosine law to determine the value of cosine A.
a2 = b2 + c2 -2bc cos a25 = 36 + 64 - 2*6*8 * cos acos a = 25/32
Answer:
21.98
Step-by-step explanation:
7*3.16=21.98
Answer:
D. 5
Step-by-step explanation:
Mean: (50+60)/2
110/2
55
Margin of error:
60 - 55
5
<u>Answer</u><u> </u><u>:</u><u>-</u>
9(3+√3) feet
<u>Step </u><u>by</u><u> step</u><u> explanation</u><u> </u><u>:</u><u>-</u>
A triangle is given to us. In which one angle is 30° and length of one side is 18ft ( hypontenuse) .So here we can use trignometric Ratios to find values of rest sides. Let's lable the figure as ∆ABC .
Now here the other angle will be = (90°-30°)=60° .
<u>In ∆ABC , </u>
=> sin 30 ° = AB / AC
=> 1/2 = AB / 18ft
=> AB = 18ft/2
=> AB = 9ft .
<u>Again</u><u> </u><u>In</u><u> </u><u>∆</u><u> </u><u>ABC</u><u> </u><u>,</u><u> </u>
=> cos 30° = BC / AC
=> √3/2 = BC / 18ft
=> BC = 18 * √3/2 ft
=> BC = 9√3 ft .
Hence the perimeter will be equal to the sum of all sides = ( 18 + 9 + 9√3 ) ft = 27 + 9√3 ft = 9(3+√3) ft .
<h3>
<u>Hence </u><u>the</u><u> </u><u>perim</u><u>eter</u><u> of</u><u> the</u><u> </u><u>triangular</u><u> </u><u>pathway</u><u> </u><u>shown</u><u> </u><u>is</u><u> </u><u>9</u><u> </u><u>(</u><u> </u><u>3</u><u> </u><u>+</u><u> </u><u>√</u><u>3</u><u> </u><u>)</u><u> </u><u>ft</u><u> </u><u>.</u></h3>
Answer:
0.095163
Step-by-step explanation:
given that a starter motor used in a space vehicle has a high rate of reliability and was reputed to start on any given occasion with probability .99999
Here we find that for any start, there are exactly two outcomes either success or failure.
Also each start is independent of the other since p = 0.99999 for succss is given constant.
Thus X no of successes is binomial with p = 0.99999 and n =10000
If Y is taken as failure then Y is binomial with p' = 0.00001 and n =10000
Required probability
= the probability of at least one failure in the next 10,000 starts
= 1-P(no failure in 10000 starts)
=