Answer:
I just toughed it out and talked with friends
Explanation:
The centripetal force acting on the ball will be 23.26 N.The direction of the centripetal force is always in the path of the center of the course.
<h3>What is centripetal force?</h3>
The force needed to move a body in a curved way is understood as centripetal force. This is a force that can be sensed from both the fixed frame and the spinning body's frame of concern.
The given data in the problem is;
m is the mass of A ball = 0.25 kg
r is the radius of circle= 1.6 m rope
v is the tangential speed = 12.2 m/s
is the centripetal force acting on the ball
The centripetal force is found as;

Hence the centripetal force acting on the ball will be 23.26 N.
To learn more about the centripetal force refer to the link;
brainly.com/question/10596517
The watch hand covers an angular displacement of 2π radians in 60 seconds.
ω = 2π/60
ω = 0.1 rad/s
v = ωr
v = 0.1 x 0.08
v = 8 x 10⁻³ m/s
Answer: 16.22 m/s^2
Explanation: g= GM/r^2 G= (6.67x 10^-11) M= 1.66(6x 10^24) r=(6400x 10^3) so
((6.67x10^-11)(1.66x 6x 10^24))/ (6400x10^3)^2 = 16.22 m/s^2
Answer: W =
J
Explanation: Since the potassium ion is at the outside membrane of a cell and the potential here is lower than the potential inside the cell, the transport will need work to happen.
The work to transport an ion from a lower potential side to a higher potential side is calculated by

q is charge;
ΔV is the potential difference;
Potassium ion has +1 charge, which means:
p =
C
To determine work in joules, potential has to be in Volts, so:

Then, work is


To move a potassium ion from the exterior to the interior of the cell, it is required
J of energy.