Answer:
f = 1 Hz
Explanation:
From the attached figure, we find that the time period of the wave is 1 second.
It is a longitudinal wave. It travel in the form of compression and rarefaction. The relation between time period T and frequency f is given by :

Hence, the frequency of this wave is 1 Hz.
Answer:
A star that always remains above your horizon and appears to rotate around the celestial pole.
Explanation:
A) a star that is close to the north celestial pole: a circumpolar star could be close to the north celestial pole, but this answer is omitting the south celestial pole.
B) a star that is close to the south celestial pole: a circumpolar star could be close to the south celestial pole, but this answer is omitting the north celestial pole.
C) a star that always remains above your horizon and appears to rotate around the celestial pole: this is the definition of a circumpolar star.
D) a star that makes a daily circle around the celestial sphere: every star does this.
E) a star that is visible from the Arctic or Antarctic circles
: there are many starts visible from there that are not circumpolar.
Answer:
4.9 eV .
Explanation:
It is the case of discharge through mercury tube light . In it , mercury atoms are exited due to which electrons are sent to higher energy level . Here current drops to zero because electrons are excited to higher level . Energy are absorbed in quantised manner . Energy absorbed by electrons will be 4.9 eV . That means , difference in energy between two energy level is 4.9 eV .
Constant = straight line
“Travels at constant negative acc.”
Which is negative slope
Solution: B. Straight line w/ neg. slope
Answer:
139.6m/s
Explanation:
Calculate the tension first, T=m*g
mass(m): 1750kg, gravity(g): 9.8m/s^2
T= 1750*9.8
=17150N
Then calculate the wave speed using the equation v = √ (T/μ)
v= √(17150N)/(0.88kg/m)
=139.6m/s