Plug in the corresponding values into y = mx + b
8.18 in for y
1.31 in for m
17.2 in for b
8.18 = 1.31x + 17.2
Now bring 17.2 to the left side by subtracting 17.2 to both sides (what you do on one side you must do to the other). Since 17.2 is being added on the right side, subtraction (the opposite of addition) will cancel it out (make it zero) from the right side and bring it over to the left side.
8.18 - 17.2 = 1.31x
-9.02 = 1.31x
Then divide 1.31 to both sides to isolate x. Since 1.31 is being multiplied by x, division (the opposite of multiplication) will cancel 1.31 out (in this case it will make 1.31 one) from the right side and bring it over to the left side.
-9.02/1.31 = 1.31x/1.31
x ≈ -6.8855
x is roughly -6.89
Hope this helped!
~Just a girl in love with Shawn Mendes
I'm assuming you want the first law of thermodynamics.
The First Law of Thermodynamics states that heat is a form of energy and cannot be created or destroyed. It can, however, be transferred from one location to another and can be converted into other forms of energy.
Answer:
(a): 
(b): 
(c): 
Explanation:
Given that an electron revolves around the hydrogen atom in a circular orbit of radius r = 0.053 nm = 0.053
m.
Part (a):
According to Coulomb's law, the magnitude of the electrostatic force of interaction between two charged particles of charges
and
respectively is given by

where,
= Coulomb's constant = 
= distance of separation between the charges.
For the given system,
The Hydrogen atom consists of a single proton, therefore, the charge on the Hydrogen atom, 
The charge on the electron, 
These two are separated by the distance, 
Thus, the magnitude of the electrostatic force of attraction between the electron and the proton is given by

Part (b):
The gravitational force of attraction between two objects of masses
and
respectively is given by

where,
= Universal Gravitational constant = 
= distance of separation between the masses.
For the given system,
The mass of proton, 
The mass of the electron, 
Distance between the two, 
Thus, the magnitude of the gravitational force of attraction between the electron and the proton is given by

The ratio
:

Postive and negatives attract, positive and positive repel. answer is negatively charged pipe.
sound waves and light energy are not "affected" by static electricity
Answer:
the release will be at 3.266 m distance
Explanation:
mass = 1 Kg
spring constant (k) = 800 N/m
initial compression = 0.20 m
θ = 30⁰



hence the release will be at 3.266 m distance.