Answer:
5
Explanation:
Firstly, we convert what we have to percentage compositions.
There are two parts in the molecule, the sulphate part and the water part.
The percentage compositions is as follows:
Sulphate- (103.74)/(103.74 + 58.55) × 100% = apprx 64%
The water part = 100 - 64 = 36%
Now, we divide the percentages by the molar masses.
For the CuSO4 molar mass is 64 + 32 + 4(16) = 160g/mol
For the H2O = 2(1) + 16 = 18g/mol
Now we divide the percentages by these masses
Sulphate = 64/160 = 0.4
Water = 36/18 = 2
The ratio is thus 0.4:2 = 1:5
Hence, there are 5 water molecules.
Answer:
When you walk your dog, you are using energy from the sunlight to power the activity. Explain. The energy you use is transferred from glucose, which got it directly from sunlight.
Explanation:
Answer : The electron configurations consistent with this fact is, (b) [Kr] 4d¹⁰
Explanation :
Electronic configuration : It is defined as the representation of electrons around the nucleus of an atom.
Number of electrons in an atom are determined by the electronic configuration.
Paramagnetic compounds : They have unpaired electrons.
Diamagnetic compounds : They have no unpaired electrons that means all are paired.
The given electron configurations of Palladium are:
(a) [Kr] 5s²4d⁸
In this, there are 2 electrons in 's' orbital and 8 electrons in 'd' orbital. From the partial orbital diagrams we conclude that 's' orbital are paired but 'd' orbital are not paired. So, this configuration shows paramagnetic.
(b) [Kr] 4d¹⁰
In this, there are 10 electrons in 'd' orbital. From the partial orbital diagrams we conclude that electrons in 'd' orbital are paired. So, this configuration shows diamagnetic.
(c) [Kr] 5s¹4d⁹
In this, there are 1 electron in 's' orbital and 9 electrons in 'd' orbital. From the partial orbital diagrams we conclude that 's' orbital and 'd' orbital are not paired. So, this configuration shows paramagnetic.
Answer:
Its kinetic energy.
Explanation:
In a liquid, the molecules are so close together that there is very little empty space. A liquid also has a definite volume, because molecules in a liquid do not break away from the attractive forces. The molecules can, however, move past one another freely, and so a liquid can flow, can be poured, and assumes the shape of its container.
An increase in the temperature of a liquid causes an increase in the average speed of its molecules. As the temperature of a liquid increases, the molecules move faster thereby increasing the liquid's kinetic energy.