C is the answer it’s not d because mackerel does not eat tuna I’m not sure tho
From the periodic table:
mass of carbon = 12 grams
mass of hydrogen = 1 gram
mass of chlorine = 35.5 grams
Therefore,
molar mass of CH2Cl2 = 12 + 2(1) + 2(35.5) = 85 grams
number of moles = mass / molar mass
number of moles of CH2Cl2 = 66.05 / 85 = 0.777 moles
One mole of CH2Cl2 contains two moles of Cl and each chlorine mole has Avogadro's number of atoms in it.
Therefore,
number of chlorine atoms in 0.777 moles of CH2Cl2 can be calculated as follows:
number of atoms = 0.777 * 2 * 6.022 * 10^23 = 9.358 * 10^23 atoms
Now, we will take log base 10 for this number:
log (9.358 * 10^23) = 23.97119
Answer:
0.80 seconds (2 significant figures)
Explanation:
The equation of the reaction is given as;
CICH2CH2Cl (g) --> CH2CHCI (g) + HCl(g)
Rate constant (k) = 2.01 s^-1
From the units of the rate constant, this is a first order reaction.
Initial Concentration = 1.34 M
t = ?
Final concentration = 20% of 1.34 = 0.268 M
The integrated rate law for a first order reaction is given as;
ln[A] = ln[A]o - kt
ln(0.268) = ln(1.34) - 2.01(t)
-2.01(t) = - 1.6094
t = 0.8007 ≈ 0.80 seconds (2 significant figures)
Answer: B) KCl
Explanation:
It is an odourless gas with a melting point of of 770°c and a boiling point of about 1420°c, it exists in a white crystalline solid form. KCl is highly water soluble and also soluble in other variety of polar solvent but insoluble in many organic solvents.