Answer:
As a box A has a smaller average density than box B, then it will have a greater acceleraton towards the surface upon releasing. So the option E) Box A is a correct option.
Explanation:
OK. So you're pushing on the small box, and on the other side of it, the small
box is pushing on the big box. So you're actually pushing both of them.
-- The total mass that you're pushing is (5.2 + 7.4) = 12.6 kg.
-- You're pushing it with 5.0N of force.
-- Acceleration of the whole thing = (force)/(mass) = 5/12.6 = <em>0.397 m/s²</em> (rounded)
-- Both boxes accelerate at the same rate. So the box farther away from you ...
the big one, with 7.4 kg of mass, accelerates at the same rate.
The force on it to make it accelerate is (mass) x (acceleration) =
(7.4 kg) x (5/12.6 m/s²) = <em>2.936 N.</em>
The only force on the big box comes from the small box, pushing it from behind.
So that same <em>2.936N</em> must be the contact force between the boxes.
Answer: Valence electrons
Valence electrons are those that are in the outermost or superficial layer of the atom, which means they have the highest energy compared to those of the inner layers.
Because of their position, it is easier for these electrons to interact with other atoms of their own element as well as different elements. This is done through the process of forming bonds when being attracted by other atoms.
This is called the Phi Phenomenon.
This is an illusion of movement created when two or more adjacent lights blink on and off in quick succession; when two adjacent stationary lights blink on and off in quick succession; we perceive a single light moving back and forth between them. It is an optical illusion of perceiving a series of still images, when viewed in rapid succession, as continuous motion.