Answer:
60*12.0= 720 = v/60 * 12.0 squared which is 1,728
Explanation:
Horizontal velocity component: Vx = V * cos(α)
A jet fighter flies from the airbase A 300 km East to the point M. Then 350 km at 30° West of North.
It means : at 60° North of West. So the distance from the final point to the line AM is :
350 · cos 60° = 350 · 0.866 = 303.1 km
Let`s assume that there is a line N on AM.
AN = 125 km and NM = 175 km.
And finally jet fighter flies 150 km North to arrive at airbase B.
NB = 303.1 + 150 = 453.1 km
Then we can use the Pythagorean theorem.
d ( AB ) = √(453.1² + 125²) = √(205,299.61 + 15,625) = 470 km
Also foe a direction: cos α = 125 / 470 = 0.266
α = cos^(-1) 0.266 = 74.6°
90° - 74.6° = 15.4°
Answer: The distance between the airbase A and B is 470 km.
Direction is : 15.4° East from the North.
Answer:
A) d_o = 20.7 cm
B) h_i = 1.014 m
Explanation:
A) To solve this, we will use the lens equation formula;
1/f = 1/d_o + 1/d_i
Where;
f is focal Length = 20 cm = 0.2
d_o is object distance
d_i is image distance = 6m
1/0.2 = 1/d_o + 1/6
1/d_o = 1/0.2 - 1/6
1/d_o = 4.8333
d_o = 1/4.8333
d_o = 0.207 m
d_o = 20.7 cm
B) to solve this, we will use the magnification equation;
M = h_i/h_o = d_i/d_o
Where;
h_o = 3.5 cm = 0.035 m
d_i = 6 m
d_o = 20.7 cm = 0.207 m
Thus;
h_i = (6/0.207) × 0.035
h_i = 1.014 m
–9.8 m/s<span>2
Just took it and got it right!</span>
Answer:
the velocity of the boats after the collision is 4.36 m/s.
Explanation:
Given;
mass of fish, m₁ = 800 kg
mass of boat, m₂ = 1400 kg
initial velocity of the fish, u₁ = 12 m/s
initial velocity of the boat, u₂ = 0
let the final velocity of the fish-boat after collision = v
Apply the principle of conservation of linear momentum for inelastic collision;
m₁u₁ + m₂u₂ = v(m₁ + m₂)
800 x 12 + 1400 x 0 = v(800 + 1400)
9600 = 2200v
v = 9600/2200
v = 4.36 m/s
Therefore, the velocity of the boats after the collision is 4.36 m/s.