Answer:
The maximum height reached by the body is 313.6 m
The time to return to its point of projection is 8 s.
Explanation:
Given;
initial velocity of the body, u = 78.4 m/s
at maximum height (h) the final velocity of the body (v) = 0
The following equation is applied to determine the maximum height reached by the body;
v² = u² - 2gh
0 = u² - 2gh
2gh = u²
h = u²/2g
h = (78.4²) / (2 x 9.8)
h = 313.6 m
The time to return to its point of projection is calculated as follows;
at maximum height, the final velocity becomes the initial velocity = 0
h = v + ¹/₂gt²
h = 0 + ¹/₂gt²
h = ¹/₂gt²
2h = gt²
t² = 2h/g

Answer:
The force bumper at 0.200m
F=2722.5 N
Explanation:
Using the energy theorem of work

W=ΔK
W=F*d
ΔK=

ΔK=F*d=

Let l = Q/L = linear charge density. The semi-circle has a length L which is half the circumference of the circle. So w can relate the radius of the circle to L by
<span>C = 2L = 2*pi*R ---> R = L/pi </span>
<span>Now define the center of the semi-circle as the origin of coordinates and define a as the angle between R and the x-axis. </span>
<span>we can define a small charge dq as </span>
<span>dq = l*ds = l*R*da </span>
<span>So the electric field can be written as: </span>
<span>dE =kdq*(cos(a)/R^2 I_hat + sin(a)/R^2 j_hat) </span>
<span>dE = k*I*R*da*(cos(a)/R^2 I_hat + sin(a)/R^2 j_hat) </span>
<span>E = k*I*(sin(a)/R I_hat - cos(a)/R^2 j_hat) </span>
<span>E = pi*k*Q/L(sin(a)/L I_hat - cos(a)/L j_hat)</span>
A solid is the only state of matter that keeps it shape and volume when placed in different containments