Answer:
I think it's 6 moles are produced
a. mass of iron = 69.92 g
b. percent yield = 93%
<h3>Further eplanation
</h3>
Percent yield is the compare of the amount of product obtained from a reaction with the amount you calculated
General formula:
Percent yield = (Actual yield / theoretical yield )x 100%
An actual yield is the amount of product actually produced by the reaction. A theoretical yield is the amount of product that you calculate from the reaction equation according to the product and reactant coefficients
a.
Reaction
Fe₂O₃+3CO⇒2Fe+3CO₂
MW Fe₂O₃ : 159.69 g/mol
mol Fe₂O₃

mol Fe₂O₃ : mol Fe = 1 : 2
mol Fe :

mass of Fe(Ar=55.845 g/mol) :

b.
actual yield = 65 g
theoretical yield = 69.92 g
percent yield :

Answer: The ion that contribute to water hardness are:
--> a. Ca2+
--> b. (HCO)3^- and
--> c. Mg2+
While K+ DOES NOT contribute to water hardness.
Explanation:
WATER in chemistry is known as a universal solvent. This is so because it is polar in nature and dissolves most inorganic solutes and some polar organic solutes to form aqueous solutions. It is composed of elements such as hydrogen and oxygen in the combined ratio of 2:1.
Water is said to be HARD if it does not lather readily with soap. There are two types of water hardness:
--> Permanent hardness: This is mainly due to the presence of CALCIUM and MAGNESIUM ions in the form of soluble tetraoxosulphate(VI) and chlorides. These ions are removed by adding washing soda or caustic soda.
--> Temporary hardness: This is due to the presence of calcium HYDROGENTRIOXOCARBONATES. It can be removed by boiling and using slaked lime.
Therefore from the above given ions, Ca2+,(HCO)3^- and Mg2+ contributes to water hardness.
Answer:
Newton’s law of inertia is illustrated in tests with crash dummies, seat belts, and airbags, wherein the object stays in motion unless there is an unbalanced force applied to it.
Inertia is the main reason why there are seatbelts and airbags in the car. In this case, when the seatbelt is trapped to the passenger, the passenger experiences the same state of motion as the car. If the car accelerates/decelerates, the passenger experiences it too. When the car experiences collision, an unbalance force is acted upon it. This causes the car to stop abruptly, and the passenger shares the same state of motion because of the seatbelt and the airbags that apply the unbalanced force to stop the passenger to go forward.