Answer:

Explanation:
Hello,
In this case, given that a typical aspirin tablet contains 5.00 grains of pure aspirin, the first step here is to compute the mass of those grans per tablet given that 1.00 g = 15.4 grains:

In such a way, the number of aspirin tablets are computed considering the total mass of aspirin and the mass per tablet:

Best regards.
To find molarity
1) number of mol of solute.
Solute is HCl.
M(HCl)= 1.0+35.5 =36.5 g/mol
25g *1 mol/36.5 g = 25/36.5 mol HCl
2) Molarity is number of mole of the solute in 1 L solution.
150 mL = 0.150 L
(25/36.5 mol HCl )/(0.150 L) = 25/(36.5*0.150) ≈ 4.57≈4.6 mol/L
The answer is c. Calorimeter
HF and NaF - If the right concentrations of aqueous solutions are present, they can produce a buffer solution.
<h3>What are buffer solutions and how do they differ?</h3>
- The two main categories of buffers are acidic buffer solutions and alkaline buffer solutions.
- Acidic buffers are solutions that contain a weak acid and one of its salts and have a pH below 7.
- For instance, a buffer solution with a pH of roughly 4.75 is made of acetic acid and sodium acetate.
<h3>Describe buffer solution via an example.</h3>
- When a weak acid or a weak base is applied in modest amounts, buffer solutions withstand the pH shift.
- A buffer made of a weak acid and its salt is an example.
- It is a solution of acetic acid and sodium acetate CH3COOH + CH3COONa.
learn more about buffer solutions here
<u>brainly.com/question/8676275</u>
#SPJ4
Silicon is the element having a mass of 28.09 g
<u>Explanation</u>:
- Silicon is the element having an atomic mass of 28.09 g / mol. So 28.09 g of silicon contains 6.023
10^23 atoms. One mole of each element can produce one mole of compound.
- The Atomic weight of an element can be determined by the number of protons and neutrons present in one atom of that element. So atomic weight expressed in grams always contain the same number of atoms( 6.023
10^23).
- Avagadro number is the number of atoms of 1 mole of any gas at standard temperature and pressure. It has been determined that 6.023
10^23 atoms of an element are equal to the average atomic mass of that element.