As per given condition of point B we can see that height at point B is "h/2" from the ground
So we know that potential energy is given as
U = mgh
so here we have to put height h = h/2
so potential energy is U = mgh/2
now for kinetic energy we need to find the speed of it after falling the distance h/2
now by kinematics we will have

now for kinetic energy


now total energy will be given as

now for point C we can say that it is the point near to ground
So here height is ZERO
now potential energy will also be zero
U = 0
now for kinetic energy we need to find speed

now kinetic energy


now again we have total energy

2.7549 x 10^4 is the answer I hope this helped u
Answer:
It would because the shape of the rocket is designed to be able to slice through the air as smooth as possible and now you may be thinking that air is already smooth but when you try to push something as large and heavy like a rocket then the shape of the rocket will be very important. The bottom of the rocket is flatter then the top so it is not designed to fly smoothly through the air. So the rocket would fall vertically downward(If it was still in one piece)because of it's shape. It is easier for the top of the rocket to go smoothly through the air then the bottom.
Explanation:
I am 90% sure this is correct but if I'm not please tell me
Then the magnitude of the net force is the difference between the two forces,
and its direction is the same as the direction of the greater one.
Answer:
When the body is kept at the surface there height of the stone is equal to zero. hence, if the height of the stone is zero then Potential energy is equal to zer