When bacteria in the soil takes nitrogen from the air it becomes nitrates it can finally move through the food chain in this form.
The net force on the barge is 8000 N
Explanation:
In order to find the net force on the badge, we have to use the rules of vector addition, since force is a vector quantity.
In this problem, we have two forces:
- The force of tugboat A,
, acting in a certain direction - The force of tugboat B,
, also acting in the same direction
Since the two forces act in the same direction, this means that we can simply add their magnitudes to find the net combined force on the barge. Therefore, we get

and the direction is the same as the direction of the two forces.
Learn more about forces:
brainly.com/question/11179347
brainly.com/question/6268248
#LearnwithBrainly
Answer:
0.4778 m/s
Explanation:
To solve this question, we will make use of law of conservation of momentum.
We are given that the rock's velocity is 12 m/s at 35°. Thus, the horizontal component of this velocity is;
V_x = (12 m/s)(cos(35°)) = 9.83 m/s.
Thus, the horizontal component of the rock's momentum is;
(3.5 kg)(9.83 m/s) = 34.405 kg·m/s.
Since the person is not pushed up off the ice or down into it, his momentum will have no vertical component and so his momentum will have the same magnitude as the horizontal component of the rock's momentum.
Thus, to get the person's speed, we know that; momentum = mass x velocity
Mass of person = 72 kg and we have momentum as 34.405 kg·m/s
Thus;
34.405 = 72 x velocity
Velocity = 34.405/72
Velocity = 0.4778 m/s
The heat capacity and the specific heat are related by C=cm or c=C/m. The mass m, specific heat c, change in temperature ΔT, and heat added (or subtracted) Q are related by the equation: Q=mcΔT. Values of specific heat are dependent on the properties and phase of a given substance.
Electron<span>. the central part of an atom containing </span>protons<span> and </span>neutrons<span> ... which of the following is necessary to calculate the atomic </span>mass<span> of an element? ... which of the </span>statements correctly compares<span>the relative size of an ion to its neutral atom?</span>