Answer:
1.12 moles
Explanation:
To find the amount of moles, you need to use the Ideal Gas Law:
PV = nRT
In this equation,
-----> P = pressure (atm)
-----> V = volume (L)
-----> n = moles
-----> R = Ideal Gas constant (0.08206 atm*L/mol*K)
-----> T = temperature (K)
After converting the temperature from Celsius to Kelvin, you can plug the given values into the equation and solve for "n".
P = 1.00 atm R = 0.08206 atm*L/mol*K
V = 25.0 L T = 0. °C + 273 = 273 K
n = ? moles
PV = nRT
(1.00 atm)(25.0 L) = n(0.08206 atm*L/mol*K)(273 K)
25.0 = n(22.4)
1.12 = n
The pressure will not affect the rate of solution.
Answer :
- Boiling point of the sugar solution will be higher than that of water's boling point.
- Freezing point of the sugar solution will be lower than that of water's freezing point.
Explanation:
- Boiling point of a liquid is defined as temperature at which vapor pressure of liquid becomes equal to the atmospheric pressure.
Boiling point of solution is always higher than that of the pure solvent
Vapor pressure increases with increase in temperature which means sugar solution will be heated more to make vapor pressure equal to atmospheric pressure.
- Freezing point is defined as temperature at which solid and liquid phase are at equilibrium or temperature at which vapor pressure of liquid becomes equal to the vapor pressure in its solid phase.
Freezing point of solution is always lower than that of the pure solvent.
Lower the temperature, lower will be the vapor pressure which sugar solution solution will get freeze at lower temperature than that of the water.
Answer:
is there supposed to be some type of image or ...
Explanation:
A. which I'm guessing are carbon and hydrogen