<span>0.0165 m
The balanced equation for the reaction is
AgNO3 + MgCl2 ==> AgCl + Mg(NO3)2
So it's obvious that for each Mg ion, you'll get 1 AgCl molecule as a product. Now calculate the molar mass of AgCl, starting with looking up the atomic weights.
Atomic weight silver = 107.8682
Atomic weight chlorine = 35.453
Molar mass AgCl = 107.8682 + 35.453 = 143.3212 g/mol
Now how many moles were produced?
0.1183 g / 143.3212 g/mol = 0.000825419 mol
So we had 0.000825419 moles of MgCl2 in the sample of 50.0 ml. Since concentration is defined as moles per liter, do the division.
0.000825419 / 0.0500 = 0.016508374 mol/L = 0.016508374 m
Rounding to 3 significant figures gives 0.0165 m</span>
Answer:
Atoms He (Avogadro’s number) → Moles of He (molar mass of He) → Mass of He
• molar mass of He (from the periodic table) = 4.003 g/mol
• Avogadro’s Number: Avogadro’s number gives us the number of entities present in 1 mole: 6.022 × 1023 He atoms in 1 mole of He
hope this is help full please mark me Brainliest
Answer:
The material which is likely to slow the flow of electric charges the most is PVC plastic ‾ \text{\underline{PVC plastic}} PVC plastic.
Explanation:
brainlist please
it will sink
Explanation:
the solid iron will sink because it is dense than the liquid iron I will sink and it will melt
<span>Answer:
For this problem, you would need to know the specific heat of water, that is, the amount of energy required to raise the temperature of 1 g of water by 1 degree C. The formula is q = c X m X delta T, where q is the specific heat of water, m is the mass and delta T is the change in temperature. If we look up the specific heat of water, we find it is 4.184 J/(g X degree C). The temperature of the water went up 20 degrees.
4.184 x 713 x 20.0 = 59700 J to 3 significant digits, or 59.7 kJ.
Now, that is the energy to form B2O3 from 1 gram of boron. If we want kJ/mole, we need to do a little more work.
To find the number of moles of Boron contained in 1 gram, we need to know the gram atomic mass of Boron, which is 10.811. Dividing 1 gram of boron by 10.811 gives us .0925 moles of boron. Since it takes 2 moles of boron to make 1 mole B2O3, we would divide the number of moles of boron by two to get the number of moles of B2O3.
.0925/2 = .0462 moles...so you would divide the energy in KJ by the number of moles to get KJ/mole. 59.7/.0462 = 1290 KJ/mole.</span>