Answer:
A) The particle will accelerate in the direction of point C.
Explanation:
As we know that
potential at points A, B,C and D as V_A, V_B, V_C, V_D and it is clear from the question that
V_A>V_B>V_C
And we know that flow is always from higher to lower potential (for positive charge due to positive potential energy).
So the charge will accelerate from B toward C.
Hence, the correct option is A.
Because the object is still made of the same material
Density is not affected by the weight and shape of an object its affected by how concentrated the atoms are in a given volume
Answer:
a = F-ff/m
Explanation:
According to Newton's second law of motion which states that "the rate of change in momentum of a body is directly proportional to the applied force F and acts in the direction of the force.
Mathematically;
F = ma
Since two forces acts on the cart i.e the moving force F and the frictional force Ff , we will take the sum of the forces.
∑F = ma where
m is the mass of the cart
a is its acceleration
∑F = F+(-ff )(since frictional force is an opposing force)
F - ff = ma
Dividing both sides by mass m
a = F-ff/m
Answer:
a) their potential energy increases.
Explanation:
Ohm's Law is
R= V/I
Where R= Resistance
V= potential difference or potential energy
I= current or conduction electron flow rate
Clearly R and V are directly proportional i-e Potential energy increases with resistance.
Answer:
We need about 8769 meters of wire to produce a 2.6 kilogauss magnetic field.
Explanation:
Recall the formula for the magnetic field produced by a solenoid of length L. N turns, and running a current I:

So, in our case, where B = 2.6 KG = 0.26 Tesla; I is 3 amperes, and L = 0.57 m, we can find what is the number of turns needed;

Therefore we need about 39312 turns of wire. Considering that each turn must have a length of
, where D is the diameter of the plastic cylindrical tube, then the total length of the wire must be:

We can round it to about 8769 meters.