Answer:Temperature increases
Explanation: As the gas in the container is an ideal gas so it should follow the ideal gas equation, the equation of state.
We know ideal gas equation to be PV=nRT where
P=pressure
V=Volume
T=Temperature
R=Real gas constant
n=Number of moles
since the gas is insulated such that no heat goes into or out of the system .
When we compress the ideal gas using a piston, Thermodynamically it means that work is done on the system by the surroundings.
Now as the ideal gas is been compressed so the volume of the gas would decrease and slowly a time will reach when no more gas can be compressed that is there cannot be any further decrease in volume of the gas.
From the equation PV=nRT
Once there is no further compression is possible hence volume becomes constant so pressure of the ideal gas becomes directly proportional to the temperature as n and R are constants. Also as the pressure and volume are inversely related so an decrease in volume would lead to an increase in pressure.
As the ideal gas is compressed so the pressure of the gas would increase since the gas molecules have smaller volume available after compression hence the gas molecules would quite frequently have collisions with other gas molecules or piston and this collision would lead to increase in speed of the gas molecules and so the pressure would increase .
The increase in pressure would lead to an increase in temperature as show by the above ideal gas equation because the pressure and temperature are directly related.
So here we can say that work done on the system by surroundings leads to increase in temperature of the system.
Answer:
This reaction is exothermic because the system shifted to the left on heating.
Explanation:
2NO₂ (g) ⇌ N₂O₄(g)
Reactant => NO₂ (dark brown in color)
Product => N₂O₄ (colorless)
From the question given above, we were told that when the reaction at equilibrium was moved from room temperature to a higher temperature, the mixture turned dark brown in color.
This simply means that the reaction does not like heat. Hence the reaction is exothermic reaction.
Also, we can see that when the temperature was increased, the reaction turned dark brown in color indicating that the increase in the temperature favors the backward reaction (i.e the equilibrium shift to the left) as NO₂ which is the reactant is dark brown in color. This again indicates that the reaction is exothermic because an increase in the temperature of an exothermic reaction will shift the equilibrium position to the left.
Therefore, we can conclude that:
The reaction is exothermic because the system shifted to the left on heating.
Answer:
option A is the correct answer .
Explanation:
as density = mass per unit volume
density = 7.5/2.5 = 3 gm / cm³ ..is the answer ...
pls mark my answer as brainlist plzzzz and plz vote