Answer:
3.91 moles of Neon
Explanation:
According to Avogadro's Law, same volume of any gas at standard temperature (273.15 K or O °C) and pressure (1 atm) will occupy same volume. And one mole of any Ideal gas occupies 22.4 dm³ (1 dm³ = 1 L).
Data Given:
n = moles = <u>???</u>
V = Volume = 87.6 L
Solution:
As 22.4 L volume is occupied by one mole of gas then the 16.8 L of this gas will contain....
= ( 1 mole × 87.6 L) ÷ 22.4 L
= 3.91 moles
<h3>2nd Method:</h3>
Assuming that the gas is acting ideally, hence, applying ideal gas equation.
P V = n R T ∴ R = 0.08205 L⋅atm⋅K⁻¹⋅mol⁻¹
Solving for n,
n = P V / R T
Putting values,
n = (1 atm × 87.6 L)/(0.08205 L⋅atm⋅K⁻¹⋅mol⁻¹ × 273.15K)
n = 3.91 moles
Result:
87.6 L of Neon gas will contain 3.91 moles at standard temperature and pressure.
Adaptation actually and also following control measures on how to avoid it from happening
8,766 hours is your answer :)
Answer:
6 C(s) + 3 O₂(g) + 2 Fe₂O₃(s) → 4 Fe(s) + 6 CO₂(g)
Explanation:
Iron can be formed in two steps.
Step 1: 2 C(s) + O₂(g) → 2 CO(g)
Step 2: Fe₂O₃(s) + 3 CO(g) → 2 Fe(s) + 3 CO₂(g)
In order to get the net chemical equation, we will multiply the first step by 3, the second step by 2, and then add them.
6 C(s) + 3 O₂(g) → 6 CO(g)
+
2 Fe₂O₃(s) + 6 CO(g) → 4 Fe(s) + 6 CO₂(g)
--------------------------------------------------------------------------------------------------
6 C(s) + 3 O₂(g) + 2 Fe₂O₃(s) + 6 CO(g) → 6 CO(g) + 4 Fe(s) + 6 CO₂(g)
6 C(s) + 3 O₂(g) + 2 Fe₂O₃(s) → 4 Fe(s) + 6 CO₂(g)
Answer:
photo is blurred plese send photo clearly