Standard form is
ax+by=c
where a and b and c are integers
and a is normally positivie
y+1/5=3x
minus 3x both sides
-3x+y+1/5=0
minus 1/5 both sides
-3x+y=-1/5
times -5 both sides
15x-5y=1
not listed
Answer:
28
Step-by-step explanation:
From the given information:
Let x be the number of trees.
F(x) = (50 +x) (20 - 3x)
F(x) = 1000 - 150x + 20x - 3x²)
F(x) = -3x² - 130x + 1000
Differentiating F(x) with respect to x;


F'(x) = -6x -130
Now; we set F'(x) to be equal to zero to determine the critical value;
-6x - 130 = 0
x = - 130/6
Differentiating F''(x) with respect to x


F''(x) = -6 (<0)
Thus; by the second derivative, the revenue function F(x) is maximum when x = -130/6
Therefore, the number of trees she should plant per acre to maximize her harvest is:
50 + x = 50 - 130/6
= 85/3
28
Therefore, the number of trees per acre to maximize the harvest is 28
Answer:
0.0009
Step-by-step explanation:
Answer:
541 (484) 783, 437 (410) 642
Step-by-step explanation:
Required
Fill in the bracket
First, we generate a formula for the first sequence: 541 (484) 783
![484 = 2 * [783 - 541]](https://tex.z-dn.net/?f=484%20%3D%202%20%2A%20%5B783%20-%20541%5D)
![484 = 2 * [242]](https://tex.z-dn.net/?f=484%20%3D%202%20%2A%20%5B242%5D)


Using the same formula for the second sequence: 437 (?) 642
![x = 2 * [642 - 437]](https://tex.z-dn.net/?f=x%20%3D%202%20%2A%20%5B642%20-%20437%5D)
Where x represents the empty bracket
![x = 2 * [205]](https://tex.z-dn.net/?f=x%20%3D%202%20%2A%20%5B205%5D)


PDH+HDF=180
PDH+129=180
PDH= 51