When we say "<span>The moon's surface gravity is one-sixth that of the earth.",
we mean that the acceleration of gravity on the Moon's surface is 1/6 of
the acceleration of gravity on the Earth's surface.
The acceleration of gravity is (9.8 m/s</span>²) on the Earth's surface, so
<span>it would be (9.8/6 m/s</span>²) on the Moon's surface.
<span>
The weight of any object, right now, is
(object's mass) </span>· (acceleration of gravity where the object is located now) .
<span>
If the object's mass is 24 kg and the object is on the Moon right now,
then its weight is
(24 kg) </span>· (9.8/6 m/s²)
= (24 · 9.8 / 6) kg-m/s²
= 39.2 Newtons
Here we can use coulomb's law to find the force between two charges
As per coulombs law
]tex]F = \frac{kq_1q_2}{r^2}[/tex]
here we have




now by using the above equation we have


so here the force between two charges is of above magnitude and this will be repulsive force between them as both charges are of same sign.
The velocity of the boat after the package is thrown is 0.36 m/s.
<h3>
Final velocity of the boat</h3>
Apply the principle of conservation of linear momentum;
Pi = Pf
where;
- Pi is initial momentum
- Pf is final momentum
v(74 + 135) = 15 x 5
v(209) = 75
v = 75/209
v = 0.36 m/s
Thus, the velocity of the boat after the package is thrown is 0.36 m/s.
Learn more about velocity here: brainly.com/question/6504879
#SPJ1
Answer:
<h3>The answer is 9500 kgm/s</h3>
Explanation:
The momentum of an object can be found by using the formula
<h3>momentum = mass × velocity</h3>
From the question
mass = 950 kg
velocity = 10.0 m/s
We have
momentum = 950 × 10
We have the final answer as
<h3>9500 kgm/s</h3>
Hope this helps you
Answer:
These energy exchanges are not changes in kinetic energy. They are changes in bonding energy between the molecules. "If heat is coming into a substance during a phase change, then this energy is used to break the bonds between the molecules of the substance