Answer:
The crate was being lifted by a height of 1.48 meters.
Explanation:
In an attempt o move a crate;
Force applied = 2470 N
Work done by the force = 3650 J
We know that the work done is defined as the force used to move an object to a distance.
Given the Force used and the work done by that Force, we need to find out the distance the crate was lifted to.
Work done is defined as:
Work = Force*distance covered in the direction of the force
3650 = 2470*distance
distance = 3650/2470
distance = 1.48 meters
Answer:
In physics and chemistry, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be conserved over time. ... For instance, chemical energy is converted to kinetic energy when a stick of dynamite explodes.
Answer:
2 seconds
Explanation:
The frequency of a wave is related to its wavelength and speed by the equation

where
f is the frequency
v is the speed of the wave
is the wavelength
For the wave in this problem,
v = 2 m/s

So the frequency is

The period of a wave is equal to the reciprocal of the frequency, so for this wave:

This means that the wave takes 4 seconds to complete one full cycle.
Therefore, the time taken for the wave to go from a point with displacement +A to a point with displacement -A is half the period, therefore for this wave:

The intensity of the light has no connection with the photoelectric effect.
That's what was so baffling about it before the particle nature of light
was suspected ... a match with a blue flame might stimulate the
photoelectric effect, but a high-power red searchlight couldn't do it.