Answer:
L = 8694 Kg.m²/s
Explanation:
r = 270 ĵ m
v = 14 î m/s
m = 2.3 kg
θ = 90º
L = ?
We can apply the equation
L = m*v*r*Sin θ
L = (2.3 kg)*(14 m/s)*(270 m)*Sin 90º = 8694 Kg.m²/s
Answer:
The distance between the places where the intensity is zero due to the double slit effect is 15 mm.
Explanation:
Given that,
Distance between the slits = 0.04 mm
Width = 0.01 mm
Distance between the slits and screen = 1 m
Wavelength = 600 nm
We need to calculate the distance between the places where the intensity is zero due to the double slit effect
For constructive fringe
First minima from center

Second minima from center

The distance between the places where the intensity is zero due to the double slit effect



Put the value into the formula



Hence, The distance between the places where the intensity is zero due to the double slit effect is 15 mm.
QUICK ANSWER
The collision between two gas molecules or billiard balls can be approximated as elastic collisions. Elastic collisions are exchanges of kinetic energy between two bodies having different reference frames in which the total kinetic energy of the two bodies after collision is equal to the energy before collision.'
For this problem, we use the equations derived for rectilinear motion at constant acceleration. The equations are:
a = (v - v₀)/t
x = v₀t + 0.5at²
where
a is acceleration
v and v₀ are the final and initial velocities, respectively
x is the distance
t is the time
First, let's determine the a to be used in the second equation:
a = (7.5 m/s - 0 m/s)/1.7 s = 4.411 m/s²
x = (0)(1.7s) + 0.5(4.411 m/s²)(1.7 s)²
x = 6.375 m