When it leaves the hand, it's rising at 18.2 m/s. After 1 second, gravity has slowed it to (18.2 - 9.8) = 8.4 m/s, still rising. Its average speed during the first second is 1/2 of (18.2 + 8.4) = 13.3 m/s. Rising for 1 second at an average speed of 13.3 m/s, it rises 13.3m from the hand.
Answer:

Explanation:



r = Distance between the charges



k = Coulomb constant = 
Net force is given by

The force on the particle
is
.
Answer:
m₁ / m₂ = 1.3
Explanation:
We can work this problem with the moment, the system is formed by the two particles
The moment is conserved, to simulate the system the particles initially move with a moment and suppose a shock where the particular that, without speed, this determines that if you center, you should be stationary, which creates a moment equal to zero
p₀o = m₁ v₁ + m₂ v₂
pf = 0
m₁ v₁ + m₂ v₂ = 0
m₁ / m₂ = -v₂ / v₁
m₁ / m₂= - (-6.2) / 4.7
m₁ / m₂ = 1.3
Another way to solve this exercise is to use the mass center relationship
Xcm = 1/M (m₁ x₁ + m₂ x₂)
We derive from time
Vcm = 1/M (m₁ v₁ + m₂v₂)
As they say the velocity of the center of zero masses
0 = 1/M (m₁ v₁ + m₂v₂)
m₁ v₁ + m₂v₂ = 0
m₁ / m₂ = -v₂ / v₁
m₁ / m₂ = 1.3
The correct choice is
B. Double-replacement reactions
in this type of reaction , two ionic compounds react and swaps their cations or anions giving two new compounds in the product. hence the double replacement reactions does not deal with the nucleus. all other terms like strong nuclear forces, radioactivity and nuclear decay deal with the nucleus.

In order to find it's square root, we could make it into two square roots.

Let us find the square roots of both radicals seprately.

Each pair of a number inside square root gives a number out .



Therefore,

