A. IMA: 4
The Ideal Mechanical Advantage (IMA) is given by:

where
is the input distance
is the output distance
For the pulley system in this problem,
and
, so the IMA is

B. MA: 3.59
The actual mechanical advantage (AMA), or simply the Mechanical Advantage (MA), is given by

where
is the output force and
is the input force. For the pulley system in this problem,
and
, so the MA is

C. Efficiency: 89.8 %
The efficiency of a machine is equal to the ratio between the MA and the AMA:

Therefore, in this case,

Answer:
The difference between the sidereal and synodic months occurs becuase as our moon moves around the earth, the earth also moves around our sun. Our moon must travel a little farther in its path to make up for the added distance and complete the phase cycle.
Explanation:
Hope this helps.
Answer:
8 mph
Explanation:
4 miles in half hour so you add 4 more for the second half
Answer:
<h2>
96 Joules</h2>
Explanation:
We know that efficiency is the ratio of output power by input power. i.e. Efficiency describes the quality of machine or system how good it is.
Solution,
Energy input of system = 120 J
Efficiency = 80% = 
Now,
According to definition,
Efficiency = 
Cross multiplication:

Calculate the product

Hope this helps...
Good luck on your assignment...
Answer:
the magnitude of the velocity of one particle relative to the other is 0.9988c
Explanation:
Given the data in the question;
Velocities of the two particles = 0.9520c
Using Lorentz transformation
Let relative velocity be W, so
v
= ( u + v ) / ( 1 + ( uv / c²) )
since each particle travels with the same speed,
u = v
so
v
= ( u + u ) / ( 1 + ( u×u / c²) )
v
= 2(0.9520c) / ( 1 + ( 0.9520c )² / c²) )
we substitute
v
= 1.904c / ( 1 + ( (0.906304 × c² ) / c²) )
v
= 1.904c / ( 1 + 0.906304 )
v
= 1.904c / 1.906304
v
= 0.9988c
Therefore, the magnitude of the velocity of one particle relative to the other is 0.9988c